Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c7.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c7.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c7.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c7.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c7.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
7 |
|
aks6d1c7.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c7.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c7.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
10 |
|
aks6d1c7.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
11 |
|
aks6d1c7.11 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
12 |
|
aks6d1c7.12 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
13 |
|
aks6d1c7.13 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
14 |
|
aks6d1c7.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
15 |
|
simpr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> q = r ) |
16 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P || N ) |
17 |
|
breq1 |
|- ( s = P -> ( s || N <-> P || N ) ) |
18 |
|
eqeq1 |
|- ( s = P -> ( s = r <-> P = r ) ) |
19 |
17 18
|
bibi12d |
|- ( s = P -> ( ( s || N <-> s = r ) <-> ( P || N <-> P = r ) ) ) |
20 |
|
nfv |
|- F/ s ( p || N <-> p = r ) |
21 |
|
nfv |
|- F/ p ( s || N <-> s = r ) |
22 |
|
breq1 |
|- ( p = s -> ( p || N <-> s || N ) ) |
23 |
|
equequ1 |
|- ( p = s -> ( p = r <-> s = r ) ) |
24 |
22 23
|
bibi12d |
|- ( p = s -> ( ( p || N <-> p = r ) <-> ( s || N <-> s = r ) ) ) |
25 |
20 21 24
|
cbvralw |
|- ( A. p e. Prime ( p || N <-> p = r ) <-> A. s e. Prime ( s || N <-> s = r ) ) |
26 |
25
|
biimpi |
|- ( A. p e. Prime ( p || N <-> p = r ) -> A. s e. Prime ( s || N <-> s = r ) ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> A. s e. Prime ( s || N <-> s = r ) ) |
28 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P e. Prime ) |
29 |
19 27 28
|
rspcdva |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P || N <-> P = r ) ) |
30 |
29
|
biimpd |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P || N -> P = r ) ) |
31 |
16 30
|
mpd |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P = r ) |
32 |
31
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P = r ) |
33 |
32
|
eqcomd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> r = P ) |
34 |
15 33
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> q = P ) |
35 |
34
|
oveq1d |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( q pCnt N ) = ( P pCnt N ) ) |
36 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
37 |
6 36
|
syl |
|- ( ph -> N e. ZZ ) |
38 |
|
0red |
|- ( ph -> 0 e. RR ) |
39 |
|
3re |
|- 3 e. RR |
40 |
39
|
a1i |
|- ( ph -> 3 e. RR ) |
41 |
37
|
zred |
|- ( ph -> N e. RR ) |
42 |
|
3pos |
|- 0 < 3 |
43 |
42
|
a1i |
|- ( ph -> 0 < 3 ) |
44 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
45 |
6 44
|
syl |
|- ( ph -> 3 <_ N ) |
46 |
38 40 41 43 45
|
ltletrd |
|- ( ph -> 0 < N ) |
47 |
37 46
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
48 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
49 |
47 48
|
sylibr |
|- ( ph -> N e. NN ) |
50 |
|
pcelnn |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
51 |
4 49 50
|
syl2anc |
|- ( ph -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
52 |
7 51
|
mpbird |
|- ( ph -> ( P pCnt N ) e. NN ) |
53 |
52
|
nncnd |
|- ( ph -> ( P pCnt N ) e. CC ) |
54 |
53
|
mulridd |
|- ( ph -> ( ( P pCnt N ) x. 1 ) = ( P pCnt N ) ) |
55 |
54
|
eqcomd |
|- ( ph -> ( P pCnt N ) = ( ( P pCnt N ) x. 1 ) ) |
56 |
|
1nn0 |
|- 1 e. NN0 |
57 |
56
|
a1i |
|- ( ph -> 1 e. NN0 ) |
58 |
|
pcidlem |
|- ( ( P e. Prime /\ 1 e. NN0 ) -> ( P pCnt ( P ^ 1 ) ) = 1 ) |
59 |
4 57 58
|
syl2anc |
|- ( ph -> ( P pCnt ( P ^ 1 ) ) = 1 ) |
60 |
59
|
eqcomd |
|- ( ph -> 1 = ( P pCnt ( P ^ 1 ) ) ) |
61 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
62 |
4 61
|
syl |
|- ( ph -> P e. NN ) |
63 |
62
|
nncnd |
|- ( ph -> P e. CC ) |
64 |
63
|
exp1d |
|- ( ph -> ( P ^ 1 ) = P ) |
65 |
64
|
oveq2d |
|- ( ph -> ( P pCnt ( P ^ 1 ) ) = ( P pCnt P ) ) |
66 |
60 65
|
eqtrd |
|- ( ph -> 1 = ( P pCnt P ) ) |
67 |
66
|
oveq2d |
|- ( ph -> ( ( P pCnt N ) x. 1 ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
68 |
55 67
|
eqtrd |
|- ( ph -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ r e. Prime ) -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
71 |
28
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P e. Prime ) |
72 |
|
nnq |
|- ( P e. NN -> P e. QQ ) |
73 |
62 72
|
syl |
|- ( ph -> P e. QQ ) |
74 |
62
|
nnne0d |
|- ( ph -> P =/= 0 ) |
75 |
73 74
|
jca |
|- ( ph -> ( P e. QQ /\ P =/= 0 ) ) |
76 |
75
|
adantr |
|- ( ( ph /\ r e. Prime ) -> ( P e. QQ /\ P =/= 0 ) ) |
77 |
76
|
ad3antrrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P e. QQ /\ P =/= 0 ) ) |
78 |
52
|
nnzd |
|- ( ph -> ( P pCnt N ) e. ZZ ) |
79 |
78
|
adantr |
|- ( ( ph /\ r e. Prime ) -> ( P pCnt N ) e. ZZ ) |
80 |
79
|
adantr |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P pCnt N ) e. ZZ ) |
81 |
80
|
adantr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P pCnt N ) e. ZZ ) |
82 |
81
|
adantr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) e. ZZ ) |
83 |
|
pcexp |
|- ( ( P e. Prime /\ ( P e. QQ /\ P =/= 0 ) /\ ( P pCnt N ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
84 |
71 77 82 83
|
syl3anc |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) |
85 |
84
|
eqcomd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( ( P pCnt N ) x. ( P pCnt P ) ) = ( P pCnt ( P ^ ( P pCnt N ) ) ) ) |
86 |
70 85
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( P pCnt ( P ^ ( P pCnt N ) ) ) ) |
87 |
34
|
eqcomd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P = q ) |
88 |
87
|
oveq1d |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
89 |
86 88
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
90 |
35 89
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
91 |
|
breq1 |
|- ( s = q -> ( s || N <-> q || N ) ) |
92 |
|
equequ1 |
|- ( s = q -> ( s = r <-> q = r ) ) |
93 |
91 92
|
bibi12d |
|- ( s = q -> ( ( s || N <-> s = r ) <-> ( q || N <-> q = r ) ) ) |
94 |
27
|
adantr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> A. s e. Prime ( s || N <-> s = r ) ) |
95 |
|
simpr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> q e. Prime ) |
96 |
93 94 95
|
rspcdva |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q || N <-> q = r ) ) |
97 |
96
|
bicomd |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q = r <-> q || N ) ) |
98 |
97
|
notbid |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( -. q = r <-> -. q || N ) ) |
99 |
98
|
biimpa |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || N ) |
100 |
95
|
adantr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q e. Prime ) |
101 |
49
|
adantr |
|- ( ( ph /\ r e. Prime ) -> N e. NN ) |
102 |
101
|
ad3antrrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> N e. NN ) |
103 |
|
pceq0 |
|- ( ( q e. Prime /\ N e. NN ) -> ( ( q pCnt N ) = 0 <-> -. q || N ) ) |
104 |
100 102 103
|
syl2anc |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( ( q pCnt N ) = 0 <-> -. q || N ) ) |
105 |
99 104
|
mpbird |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt N ) = 0 ) |
106 |
|
neqne |
|- ( -. q = r -> q =/= r ) |
107 |
106
|
adantl |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q =/= r ) |
108 |
16
|
adantr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P || N ) |
109 |
28
|
adantr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P e. Prime ) |
110 |
19 94 109
|
rspcdva |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P || N <-> P = r ) ) |
111 |
110
|
biimpd |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P || N -> P = r ) ) |
112 |
108 111
|
mpd |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P = r ) |
113 |
112
|
adantr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P = r ) |
114 |
113
|
eqcomd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> r = P ) |
115 |
107 114
|
neeqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q =/= P ) |
116 |
115
|
neneqd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q = P ) |
117 |
|
prmuz2 |
|- ( q e. Prime -> q e. ( ZZ>= ` 2 ) ) |
118 |
117
|
adantl |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> q e. ( ZZ>= ` 2 ) ) |
119 |
118
|
adantr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q e. ( ZZ>= ` 2 ) ) |
120 |
28
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. Prime ) |
121 |
|
dvdsprm |
|- ( ( q e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( q || P <-> q = P ) ) |
122 |
119 120 121
|
syl2anc |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q || P <-> q = P ) ) |
123 |
116 122
|
mtbird |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || P ) |
124 |
62
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. NN ) |
125 |
124
|
nnzd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. ZZ ) |
126 |
52
|
adantr |
|- ( ( ph /\ r e. Prime ) -> ( P pCnt N ) e. NN ) |
127 |
126
|
adantr |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P pCnt N ) e. NN ) |
128 |
127
|
adantr |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P pCnt N ) e. NN ) |
129 |
128
|
adantr |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P pCnt N ) e. NN ) |
130 |
|
prmdvdsexp |
|- ( ( q e. Prime /\ P e. ZZ /\ ( P pCnt N ) e. NN ) -> ( q || ( P ^ ( P pCnt N ) ) <-> q || P ) ) |
131 |
100 125 129 130
|
syl3anc |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q || ( P ^ ( P pCnt N ) ) <-> q || P ) ) |
132 |
123 131
|
mtbird |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || ( P ^ ( P pCnt N ) ) ) |
133 |
120 102
|
pccld |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P pCnt N ) e. NN0 ) |
134 |
124 133
|
nnexpcld |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P ^ ( P pCnt N ) ) e. NN ) |
135 |
|
pceq0 |
|- ( ( q e. Prime /\ ( P ^ ( P pCnt N ) ) e. NN ) -> ( ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 <-> -. q || ( P ^ ( P pCnt N ) ) ) ) |
136 |
100 134 135
|
syl2anc |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 <-> -. q || ( P ^ ( P pCnt N ) ) ) ) |
137 |
132 136
|
mpbird |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 ) |
138 |
137
|
eqcomd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> 0 = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
139 |
105 138
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
140 |
90 139
|
pm2.61dan |
|- ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
141 |
140
|
ralrimiva |
|- ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
142 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
aks6d1c7lem4 |
|- ( ph -> E! p e. Prime p || N ) |
143 |
|
reu6 |
|- ( E! p e. Prime p || N <-> E. r e. Prime A. p e. Prime ( p || N <-> p = r ) ) |
144 |
142 143
|
sylib |
|- ( ph -> E. r e. Prime A. p e. Prime ( p || N <-> p = r ) ) |
145 |
141 144
|
r19.29a |
|- ( ph -> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) |
146 |
49
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
147 |
62
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
148 |
4 49
|
pccld |
|- ( ph -> ( P pCnt N ) e. NN0 ) |
149 |
147 148
|
nn0expcld |
|- ( ph -> ( P ^ ( P pCnt N ) ) e. NN0 ) |
150 |
|
pc11 |
|- ( ( N e. NN0 /\ ( P ^ ( P pCnt N ) ) e. NN0 ) -> ( N = ( P ^ ( P pCnt N ) ) <-> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) ) |
151 |
146 149 150
|
syl2anc |
|- ( ph -> ( N = ( P ^ ( P pCnt N ) ) <-> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) ) |
152 |
145 151
|
mpbird |
|- ( ph -> N = ( P ^ ( P pCnt N ) ) ) |