| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c7.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c7.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c7.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c7.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c7.6 |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 7 |  | aks6d1c7.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c7.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c7.9 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 10 |  | aks6d1c7.10 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 11 |  | aks6d1c7.11 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 12 |  | aks6d1c7.12 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 13 |  | aks6d1c7.13 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 14 |  | aks6d1c7.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> q = r ) | 
						
							| 16 | 7 | ad2antrr |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P || N ) | 
						
							| 17 |  | breq1 |  |-  ( s = P -> ( s || N <-> P || N ) ) | 
						
							| 18 |  | eqeq1 |  |-  ( s = P -> ( s = r <-> P = r ) ) | 
						
							| 19 | 17 18 | bibi12d |  |-  ( s = P -> ( ( s || N <-> s = r ) <-> ( P || N <-> P = r ) ) ) | 
						
							| 20 |  | nfv |  |-  F/ s ( p || N <-> p = r ) | 
						
							| 21 |  | nfv |  |-  F/ p ( s || N <-> s = r ) | 
						
							| 22 |  | breq1 |  |-  ( p = s -> ( p || N <-> s || N ) ) | 
						
							| 23 |  | equequ1 |  |-  ( p = s -> ( p = r <-> s = r ) ) | 
						
							| 24 | 22 23 | bibi12d |  |-  ( p = s -> ( ( p || N <-> p = r ) <-> ( s || N <-> s = r ) ) ) | 
						
							| 25 | 20 21 24 | cbvralw |  |-  ( A. p e. Prime ( p || N <-> p = r ) <-> A. s e. Prime ( s || N <-> s = r ) ) | 
						
							| 26 | 25 | biimpi |  |-  ( A. p e. Prime ( p || N <-> p = r ) -> A. s e. Prime ( s || N <-> s = r ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> A. s e. Prime ( s || N <-> s = r ) ) | 
						
							| 28 | 4 | ad2antrr |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P e. Prime ) | 
						
							| 29 | 19 27 28 | rspcdva |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P || N <-> P = r ) ) | 
						
							| 30 | 29 | biimpd |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P || N -> P = r ) ) | 
						
							| 31 | 16 30 | mpd |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> P = r ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P = r ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> r = P ) | 
						
							| 34 | 15 33 | eqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> q = P ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( q pCnt N ) = ( P pCnt N ) ) | 
						
							| 36 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) | 
						
							| 37 | 6 36 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 38 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 39 |  | 3re |  |-  3 e. RR | 
						
							| 40 | 39 | a1i |  |-  ( ph -> 3 e. RR ) | 
						
							| 41 | 37 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 42 |  | 3pos |  |-  0 < 3 | 
						
							| 43 | 42 | a1i |  |-  ( ph -> 0 < 3 ) | 
						
							| 44 |  | eluzle |  |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) | 
						
							| 45 | 6 44 | syl |  |-  ( ph -> 3 <_ N ) | 
						
							| 46 | 38 40 41 43 45 | ltletrd |  |-  ( ph -> 0 < N ) | 
						
							| 47 | 37 46 | jca |  |-  ( ph -> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 48 |  | elnnz |  |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 49 | 47 48 | sylibr |  |-  ( ph -> N e. NN ) | 
						
							| 50 |  | pcelnn |  |-  ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) | 
						
							| 51 | 4 49 50 | syl2anc |  |-  ( ph -> ( ( P pCnt N ) e. NN <-> P || N ) ) | 
						
							| 52 | 7 51 | mpbird |  |-  ( ph -> ( P pCnt N ) e. NN ) | 
						
							| 53 | 52 | nncnd |  |-  ( ph -> ( P pCnt N ) e. CC ) | 
						
							| 54 | 53 | mulridd |  |-  ( ph -> ( ( P pCnt N ) x. 1 ) = ( P pCnt N ) ) | 
						
							| 55 | 54 | eqcomd |  |-  ( ph -> ( P pCnt N ) = ( ( P pCnt N ) x. 1 ) ) | 
						
							| 56 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 57 | 56 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 58 |  | pcidlem |  |-  ( ( P e. Prime /\ 1 e. NN0 ) -> ( P pCnt ( P ^ 1 ) ) = 1 ) | 
						
							| 59 | 4 57 58 | syl2anc |  |-  ( ph -> ( P pCnt ( P ^ 1 ) ) = 1 ) | 
						
							| 60 | 59 | eqcomd |  |-  ( ph -> 1 = ( P pCnt ( P ^ 1 ) ) ) | 
						
							| 61 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 62 | 4 61 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 63 | 62 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 64 | 63 | exp1d |  |-  ( ph -> ( P ^ 1 ) = P ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ph -> ( P pCnt ( P ^ 1 ) ) = ( P pCnt P ) ) | 
						
							| 66 | 60 65 | eqtrd |  |-  ( ph -> 1 = ( P pCnt P ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ph -> ( ( P pCnt N ) x. 1 ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 68 | 55 67 | eqtrd |  |-  ( ph -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ r e. Prime ) -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 70 | 69 | ad3antrrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 71 | 28 | ad2antrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P e. Prime ) | 
						
							| 72 |  | nnq |  |-  ( P e. NN -> P e. QQ ) | 
						
							| 73 | 62 72 | syl |  |-  ( ph -> P e. QQ ) | 
						
							| 74 | 62 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 75 | 73 74 | jca |  |-  ( ph -> ( P e. QQ /\ P =/= 0 ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ r e. Prime ) -> ( P e. QQ /\ P =/= 0 ) ) | 
						
							| 77 | 76 | ad3antrrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P e. QQ /\ P =/= 0 ) ) | 
						
							| 78 | 52 | nnzd |  |-  ( ph -> ( P pCnt N ) e. ZZ ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ r e. Prime ) -> ( P pCnt N ) e. ZZ ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P pCnt N ) e. ZZ ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P pCnt N ) e. ZZ ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) e. ZZ ) | 
						
							| 83 |  | pcexp |  |-  ( ( P e. Prime /\ ( P e. QQ /\ P =/= 0 ) /\ ( P pCnt N ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 84 | 71 77 82 83 | syl3anc |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( ( P pCnt N ) x. ( P pCnt P ) ) ) | 
						
							| 85 | 84 | eqcomd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( ( P pCnt N ) x. ( P pCnt P ) ) = ( P pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 86 | 70 85 | eqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( P pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 87 | 34 | eqcomd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> P = q ) | 
						
							| 88 | 87 | oveq1d |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt ( P ^ ( P pCnt N ) ) ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 89 | 86 88 | eqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( P pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 90 | 35 89 | eqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ q = r ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 91 |  | breq1 |  |-  ( s = q -> ( s || N <-> q || N ) ) | 
						
							| 92 |  | equequ1 |  |-  ( s = q -> ( s = r <-> q = r ) ) | 
						
							| 93 | 91 92 | bibi12d |  |-  ( s = q -> ( ( s || N <-> s = r ) <-> ( q || N <-> q = r ) ) ) | 
						
							| 94 | 27 | adantr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> A. s e. Prime ( s || N <-> s = r ) ) | 
						
							| 95 |  | simpr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> q e. Prime ) | 
						
							| 96 | 93 94 95 | rspcdva |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q || N <-> q = r ) ) | 
						
							| 97 | 96 | bicomd |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q = r <-> q || N ) ) | 
						
							| 98 | 97 | notbid |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( -. q = r <-> -. q || N ) ) | 
						
							| 99 | 98 | biimpa |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || N ) | 
						
							| 100 | 95 | adantr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q e. Prime ) | 
						
							| 101 | 49 | adantr |  |-  ( ( ph /\ r e. Prime ) -> N e. NN ) | 
						
							| 102 | 101 | ad3antrrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> N e. NN ) | 
						
							| 103 |  | pceq0 |  |-  ( ( q e. Prime /\ N e. NN ) -> ( ( q pCnt N ) = 0 <-> -. q || N ) ) | 
						
							| 104 | 100 102 103 | syl2anc |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( ( q pCnt N ) = 0 <-> -. q || N ) ) | 
						
							| 105 | 99 104 | mpbird |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt N ) = 0 ) | 
						
							| 106 |  | neqne |  |-  ( -. q = r -> q =/= r ) | 
						
							| 107 | 106 | adantl |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q =/= r ) | 
						
							| 108 | 16 | adantr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P || N ) | 
						
							| 109 | 28 | adantr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P e. Prime ) | 
						
							| 110 | 19 94 109 | rspcdva |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P || N <-> P = r ) ) | 
						
							| 111 | 110 | biimpd |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P || N -> P = r ) ) | 
						
							| 112 | 108 111 | mpd |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> P = r ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P = r ) | 
						
							| 114 | 113 | eqcomd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> r = P ) | 
						
							| 115 | 107 114 | neeqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q =/= P ) | 
						
							| 116 | 115 | neneqd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q = P ) | 
						
							| 117 |  | prmuz2 |  |-  ( q e. Prime -> q e. ( ZZ>= ` 2 ) ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> q e. ( ZZ>= ` 2 ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> q e. ( ZZ>= ` 2 ) ) | 
						
							| 120 | 28 | ad2antrr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. Prime ) | 
						
							| 121 |  | dvdsprm |  |-  ( ( q e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( q || P <-> q = P ) ) | 
						
							| 122 | 119 120 121 | syl2anc |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q || P <-> q = P ) ) | 
						
							| 123 | 116 122 | mtbird |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || P ) | 
						
							| 124 | 62 | ad4antr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. NN ) | 
						
							| 125 | 124 | nnzd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> P e. ZZ ) | 
						
							| 126 | 52 | adantr |  |-  ( ( ph /\ r e. Prime ) -> ( P pCnt N ) e. NN ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> ( P pCnt N ) e. NN ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( P pCnt N ) e. NN ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P pCnt N ) e. NN ) | 
						
							| 130 |  | prmdvdsexp |  |-  ( ( q e. Prime /\ P e. ZZ /\ ( P pCnt N ) e. NN ) -> ( q || ( P ^ ( P pCnt N ) ) <-> q || P ) ) | 
						
							| 131 | 100 125 129 130 | syl3anc |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q || ( P ^ ( P pCnt N ) ) <-> q || P ) ) | 
						
							| 132 | 123 131 | mtbird |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> -. q || ( P ^ ( P pCnt N ) ) ) | 
						
							| 133 | 120 102 | pccld |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P pCnt N ) e. NN0 ) | 
						
							| 134 | 124 133 | nnexpcld |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( P ^ ( P pCnt N ) ) e. NN ) | 
						
							| 135 |  | pceq0 |  |-  ( ( q e. Prime /\ ( P ^ ( P pCnt N ) ) e. NN ) -> ( ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 <-> -. q || ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 136 | 100 134 135 | syl2anc |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 <-> -. q || ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 137 | 132 136 | mpbird |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt ( P ^ ( P pCnt N ) ) ) = 0 ) | 
						
							| 138 | 137 | eqcomd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> 0 = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 139 | 105 138 | eqtrd |  |-  ( ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) /\ -. q = r ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 140 | 90 139 | pm2.61dan |  |-  ( ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) /\ q e. Prime ) -> ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 141 | 140 | ralrimiva |  |-  ( ( ( ph /\ r e. Prime ) /\ A. p e. Prime ( p || N <-> p = r ) ) -> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 142 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | aks6d1c7lem4 |  |-  ( ph -> E! p e. Prime p || N ) | 
						
							| 143 |  | reu6 |  |-  ( E! p e. Prime p || N <-> E. r e. Prime A. p e. Prime ( p || N <-> p = r ) ) | 
						
							| 144 | 142 143 | sylib |  |-  ( ph -> E. r e. Prime A. p e. Prime ( p || N <-> p = r ) ) | 
						
							| 145 | 141 144 | r19.29a |  |-  ( ph -> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) | 
						
							| 146 | 49 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 147 | 62 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 148 | 4 49 | pccld |  |-  ( ph -> ( P pCnt N ) e. NN0 ) | 
						
							| 149 | 147 148 | nn0expcld |  |-  ( ph -> ( P ^ ( P pCnt N ) ) e. NN0 ) | 
						
							| 150 |  | pc11 |  |-  ( ( N e. NN0 /\ ( P ^ ( P pCnt N ) ) e. NN0 ) -> ( N = ( P ^ ( P pCnt N ) ) <-> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) ) | 
						
							| 151 | 146 149 150 | syl2anc |  |-  ( ph -> ( N = ( P ^ ( P pCnt N ) ) <-> A. q e. Prime ( q pCnt N ) = ( q pCnt ( P ^ ( P pCnt N ) ) ) ) ) | 
						
							| 152 | 145 151 | mpbird |  |-  ( ph -> N = ( P ^ ( P pCnt N ) ) ) |