Metamath Proof Explorer


Theorem aks6d1c7

Description: N is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf . (Contributed by metakunt, 16-May-2025)

Ref Expression
Hypotheses aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c7.2 P = chr K
aks6d1c7.3 φ K Field
aks6d1c7.4 φ P
aks6d1c7.5 φ R
aks6d1c7.6 φ N 3
aks6d1c7.7 φ P N
aks6d1c7.8 φ N gcd R = 1
aks6d1c7.9 A = ϕ R log 2 N
aks6d1c7.10 φ log 2 N 2 < od R N
aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
aks6d1c7.12 φ M mulGrp K PrimRoots R
aks6d1c7.13 φ b 1 A b gcd N = 1
aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
Assertion aks6d1c7 φ N = P P pCnt N

Proof

Step Hyp Ref Expression
1 aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c7.2 P = chr K
3 aks6d1c7.3 φ K Field
4 aks6d1c7.4 φ P
5 aks6d1c7.5 φ R
6 aks6d1c7.6 φ N 3
7 aks6d1c7.7 φ P N
8 aks6d1c7.8 φ N gcd R = 1
9 aks6d1c7.9 A = ϕ R log 2 N
10 aks6d1c7.10 φ log 2 N 2 < od R N
11 aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
12 aks6d1c7.12 φ M mulGrp K PrimRoots R
13 aks6d1c7.13 φ b 1 A b gcd N = 1
14 aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 simpr φ r p p N p = r q q = r q = r
16 7 ad2antrr φ r p p N p = r P N
17 breq1 s = P s N P N
18 eqeq1 s = P s = r P = r
19 17 18 bibi12d s = P s N s = r P N P = r
20 nfv s p N p = r
21 nfv p s N s = r
22 breq1 p = s p N s N
23 equequ1 p = s p = r s = r
24 22 23 bibi12d p = s p N p = r s N s = r
25 20 21 24 cbvralw p p N p = r s s N s = r
26 25 biimpi p p N p = r s s N s = r
27 26 adantl φ r p p N p = r s s N s = r
28 4 ad2antrr φ r p p N p = r P
29 19 27 28 rspcdva φ r p p N p = r P N P = r
30 29 biimpd φ r p p N p = r P N P = r
31 16 30 mpd φ r p p N p = r P = r
32 31 ad2antrr φ r p p N p = r q q = r P = r
33 32 eqcomd φ r p p N p = r q q = r r = P
34 15 33 eqtrd φ r p p N p = r q q = r q = P
35 34 oveq1d φ r p p N p = r q q = r q pCnt N = P pCnt N
36 eluzelz N 3 N
37 6 36 syl φ N
38 0red φ 0
39 3re 3
40 39 a1i φ 3
41 37 zred φ N
42 3pos 0 < 3
43 42 a1i φ 0 < 3
44 eluzle N 3 3 N
45 6 44 syl φ 3 N
46 38 40 41 43 45 ltletrd φ 0 < N
47 37 46 jca φ N 0 < N
48 elnnz N N 0 < N
49 47 48 sylibr φ N
50 pcelnn P N P pCnt N P N
51 4 49 50 syl2anc φ P pCnt N P N
52 7 51 mpbird φ P pCnt N
53 52 nncnd φ P pCnt N
54 53 mulridd φ P pCnt N 1 = P pCnt N
55 54 eqcomd φ P pCnt N = P pCnt N 1
56 1nn0 1 0
57 56 a1i φ 1 0
58 pcidlem P 1 0 P pCnt P 1 = 1
59 4 57 58 syl2anc φ P pCnt P 1 = 1
60 59 eqcomd φ 1 = P pCnt P 1
61 prmnn P P
62 4 61 syl φ P
63 62 nncnd φ P
64 63 exp1d φ P 1 = P
65 64 oveq2d φ P pCnt P 1 = P pCnt P
66 60 65 eqtrd φ 1 = P pCnt P
67 66 oveq2d φ P pCnt N 1 = P pCnt N P pCnt P
68 55 67 eqtrd φ P pCnt N = P pCnt N P pCnt P
69 68 adantr φ r P pCnt N = P pCnt N P pCnt P
70 69 ad3antrrr φ r p p N p = r q q = r P pCnt N = P pCnt N P pCnt P
71 28 ad2antrr φ r p p N p = r q q = r P
72 nnq P P
73 62 72 syl φ P
74 62 nnne0d φ P 0
75 73 74 jca φ P P 0
76 75 adantr φ r P P 0
77 76 ad3antrrr φ r p p N p = r q q = r P P 0
78 52 nnzd φ P pCnt N
79 78 adantr φ r P pCnt N
80 79 adantr φ r p p N p = r P pCnt N
81 80 adantr φ r p p N p = r q P pCnt N
82 81 adantr φ r p p N p = r q q = r P pCnt N
83 pcexp P P P 0 P pCnt N P pCnt P P pCnt N = P pCnt N P pCnt P
84 71 77 82 83 syl3anc φ r p p N p = r q q = r P pCnt P P pCnt N = P pCnt N P pCnt P
85 84 eqcomd φ r p p N p = r q q = r P pCnt N P pCnt P = P pCnt P P pCnt N
86 70 85 eqtrd φ r p p N p = r q q = r P pCnt N = P pCnt P P pCnt N
87 34 eqcomd φ r p p N p = r q q = r P = q
88 87 oveq1d φ r p p N p = r q q = r P pCnt P P pCnt N = q pCnt P P pCnt N
89 86 88 eqtrd φ r p p N p = r q q = r P pCnt N = q pCnt P P pCnt N
90 35 89 eqtrd φ r p p N p = r q q = r q pCnt N = q pCnt P P pCnt N
91 breq1 s = q s N q N
92 equequ1 s = q s = r q = r
93 91 92 bibi12d s = q s N s = r q N q = r
94 27 adantr φ r p p N p = r q s s N s = r
95 simpr φ r p p N p = r q q
96 93 94 95 rspcdva φ r p p N p = r q q N q = r
97 96 bicomd φ r p p N p = r q q = r q N
98 97 notbid φ r p p N p = r q ¬ q = r ¬ q N
99 98 biimpa φ r p p N p = r q ¬ q = r ¬ q N
100 95 adantr φ r p p N p = r q ¬ q = r q
101 49 adantr φ r N
102 101 ad3antrrr φ r p p N p = r q ¬ q = r N
103 pceq0 q N q pCnt N = 0 ¬ q N
104 100 102 103 syl2anc φ r p p N p = r q ¬ q = r q pCnt N = 0 ¬ q N
105 99 104 mpbird φ r p p N p = r q ¬ q = r q pCnt N = 0
106 neqne ¬ q = r q r
107 106 adantl φ r p p N p = r q ¬ q = r q r
108 16 adantr φ r p p N p = r q P N
109 28 adantr φ r p p N p = r q P
110 19 94 109 rspcdva φ r p p N p = r q P N P = r
111 110 biimpd φ r p p N p = r q P N P = r
112 108 111 mpd φ r p p N p = r q P = r
113 112 adantr φ r p p N p = r q ¬ q = r P = r
114 113 eqcomd φ r p p N p = r q ¬ q = r r = P
115 107 114 neeqtrd φ r p p N p = r q ¬ q = r q P
116 115 neneqd φ r p p N p = r q ¬ q = r ¬ q = P
117 prmuz2 q q 2
118 117 adantl φ r p p N p = r q q 2
119 118 adantr φ r p p N p = r q ¬ q = r q 2
120 28 ad2antrr φ r p p N p = r q ¬ q = r P
121 dvdsprm q 2 P q P q = P
122 119 120 121 syl2anc φ r p p N p = r q ¬ q = r q P q = P
123 116 122 mtbird φ r p p N p = r q ¬ q = r ¬ q P
124 62 ad4antr φ r p p N p = r q ¬ q = r P
125 124 nnzd φ r p p N p = r q ¬ q = r P
126 52 adantr φ r P pCnt N
127 126 adantr φ r p p N p = r P pCnt N
128 127 adantr φ r p p N p = r q P pCnt N
129 128 adantr φ r p p N p = r q ¬ q = r P pCnt N
130 prmdvdsexp q P P pCnt N q P P pCnt N q P
131 100 125 129 130 syl3anc φ r p p N p = r q ¬ q = r q P P pCnt N q P
132 123 131 mtbird φ r p p N p = r q ¬ q = r ¬ q P P pCnt N
133 120 102 pccld φ r p p N p = r q ¬ q = r P pCnt N 0
134 124 133 nnexpcld φ r p p N p = r q ¬ q = r P P pCnt N
135 pceq0 q P P pCnt N q pCnt P P pCnt N = 0 ¬ q P P pCnt N
136 100 134 135 syl2anc φ r p p N p = r q ¬ q = r q pCnt P P pCnt N = 0 ¬ q P P pCnt N
137 132 136 mpbird φ r p p N p = r q ¬ q = r q pCnt P P pCnt N = 0
138 137 eqcomd φ r p p N p = r q ¬ q = r 0 = q pCnt P P pCnt N
139 105 138 eqtrd φ r p p N p = r q ¬ q = r q pCnt N = q pCnt P P pCnt N
140 90 139 pm2.61dan φ r p p N p = r q q pCnt N = q pCnt P P pCnt N
141 140 ralrimiva φ r p p N p = r q q pCnt N = q pCnt P P pCnt N
142 1 2 3 4 5 6 7 8 9 10 11 12 13 14 aks6d1c7lem4 φ ∃! p p N
143 reu6 ∃! p p N r p p N p = r
144 142 143 sylib φ r p p N p = r
145 141 144 r19.29a φ q q pCnt N = q pCnt P P pCnt N
146 49 nnnn0d φ N 0
147 62 nnnn0d φ P 0
148 4 49 pccld φ P pCnt N 0
149 147 148 nn0expcld φ P P pCnt N 0
150 pc11 N 0 P P pCnt N 0 N = P P pCnt N q q pCnt N = q pCnt P P pCnt N
151 146 149 150 syl2anc φ N = P P pCnt N q q pCnt N = q pCnt P P pCnt N
152 145 151 mpbird φ N = P P pCnt N