Metamath Proof Explorer


Theorem aks6d1c7lem4

Description: In the AKS algorithm there exists a unique prime number p that divides N . (Contributed by metakunt, 16-May-2025)

Ref Expression
Hypotheses aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c7.2 P = chr K
aks6d1c7.3 φ K Field
aks6d1c7.4 φ P
aks6d1c7.5 φ R
aks6d1c7.6 φ N 3
aks6d1c7.7 φ P N
aks6d1c7.8 φ N gcd R = 1
aks6d1c7.9 A = ϕ R log 2 N
aks6d1c7.10 φ log 2 N 2 < od R N
aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
aks6d1c7.12 φ M mulGrp K PrimRoots R
aks6d1c7.13 φ b 1 A b gcd N = 1
aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
Assertion aks6d1c7lem4 φ ∃! p p N

Proof

Step Hyp Ref Expression
1 aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c7.2 P = chr K
3 aks6d1c7.3 φ K Field
4 aks6d1c7.4 φ P
5 aks6d1c7.5 φ R
6 aks6d1c7.6 φ N 3
7 aks6d1c7.7 φ P N
8 aks6d1c7.8 φ N gcd R = 1
9 aks6d1c7.9 A = ϕ R log 2 N
10 aks6d1c7.10 φ log 2 N 2 < od R N
11 aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
12 aks6d1c7.12 φ M mulGrp K PrimRoots R
13 aks6d1c7.13 φ b 1 A b gcd N = 1
14 aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 3 ad2antrr φ p p N K Field
16 4 ad2antrr φ p p N P
17 5 ad2antrr φ p p N R
18 6 ad2antrr φ p p N N 3
19 7 ad2antrr φ p p N P N
20 8 ad2antrr φ p p N N gcd R = 1
21 10 ad2antrr φ p p N log 2 N 2 < od R N
22 11 ad2antrr φ p p N x Base K P mulGrp K x K RingIso K
23 12 ad2antrr φ p p N M mulGrp K PrimRoots R
24 13 ad2antrr φ p p N b 1 A b gcd N = 1
25 14 ad2antrr φ p p N a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
26 simplr φ p p N p
27 simpr φ p p N p N
28 26 27 jca φ p p N p p N
29 1 2 15 16 17 18 19 20 9 21 22 23 24 25 28 aks6d1c7lem3 φ p p N P = p
30 29 eqcomd φ p p N p = P
31 30 ex φ p p N p = P
32 31 ralrimiva φ p p N p = P
33 4 7 32 3jca φ P P N p p N p = P
34 breq1 p = P p N P N
35 34 eqreu P P N p p N p = P ∃! p p N
36 33 35 syl φ ∃! p p N