| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c7.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
| 2 |
|
aks6d1c7.2 |
|- P = ( chr ` K ) |
| 3 |
|
aks6d1c7.3 |
|- ( ph -> K e. Field ) |
| 4 |
|
aks6d1c7.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
aks6d1c7.5 |
|- ( ph -> R e. NN ) |
| 6 |
|
aks6d1c7.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 7 |
|
aks6d1c7.7 |
|- ( ph -> P || N ) |
| 8 |
|
aks6d1c7.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 9 |
|
aks6d1c7.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
| 10 |
|
aks6d1c7.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
| 11 |
|
aks6d1c7.11 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 12 |
|
aks6d1c7.12 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 13 |
|
aks6d1c7.13 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
| 14 |
|
aks6d1c7.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 15 |
3
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> K e. Field ) |
| 16 |
4
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P e. Prime ) |
| 17 |
5
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> R e. NN ) |
| 18 |
6
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> N e. ( ZZ>= ` 3 ) ) |
| 19 |
7
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P || N ) |
| 20 |
8
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( N gcd R ) = 1 ) |
| 21 |
10
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
| 22 |
11
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 23 |
12
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 24 |
13
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
| 25 |
14
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 26 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p e. Prime ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p || N ) |
| 28 |
26 27
|
jca |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( p e. Prime /\ p || N ) ) |
| 29 |
1 2 15 16 17 18 19 20 9 21 22 23 24 25 28
|
aks6d1c7lem3 |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P = p ) |
| 30 |
29
|
eqcomd |
|- ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p = P ) |
| 31 |
30
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( p || N -> p = P ) ) |
| 32 |
31
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p || N -> p = P ) ) |
| 33 |
4 7 32
|
3jca |
|- ( ph -> ( P e. Prime /\ P || N /\ A. p e. Prime ( p || N -> p = P ) ) ) |
| 34 |
|
breq1 |
|- ( p = P -> ( p || N <-> P || N ) ) |
| 35 |
34
|
eqreu |
|- ( ( P e. Prime /\ P || N /\ A. p e. Prime ( p || N -> p = P ) ) -> E! p e. Prime p || N ) |
| 36 |
33 35
|
syl |
|- ( ph -> E! p e. Prime p || N ) |