| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c7.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c7.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c7.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c7.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c7.6 |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 7 |  | aks6d1c7.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c7.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c7.9 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 10 |  | aks6d1c7.10 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 11 |  | aks6d1c7.11 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 12 |  | aks6d1c7.12 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 13 |  | aks6d1c7.13 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 14 |  | aks6d1c7.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 | 3 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> K e. Field ) | 
						
							| 16 | 4 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P e. Prime ) | 
						
							| 17 | 5 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> R e. NN ) | 
						
							| 18 | 6 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 19 | 7 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P || N ) | 
						
							| 20 | 8 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( N gcd R ) = 1 ) | 
						
							| 21 | 10 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 22 | 11 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 23 | 12 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 24 | 13 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 25 | 14 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 26 |  | simplr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p e. Prime ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p || N ) | 
						
							| 28 | 26 27 | jca |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> ( p e. Prime /\ p || N ) ) | 
						
							| 29 | 1 2 15 16 17 18 19 20 9 21 22 23 24 25 28 | aks6d1c7lem3 |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> P = p ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( ( ph /\ p e. Prime ) /\ p || N ) -> p = P ) | 
						
							| 31 | 30 | ex |  |-  ( ( ph /\ p e. Prime ) -> ( p || N -> p = P ) ) | 
						
							| 32 | 31 | ralrimiva |  |-  ( ph -> A. p e. Prime ( p || N -> p = P ) ) | 
						
							| 33 | 4 7 32 | 3jca |  |-  ( ph -> ( P e. Prime /\ P || N /\ A. p e. Prime ( p || N -> p = P ) ) ) | 
						
							| 34 |  | breq1 |  |-  ( p = P -> ( p || N <-> P || N ) ) | 
						
							| 35 | 34 | eqreu |  |-  ( ( P e. Prime /\ P || N /\ A. p e. Prime ( p || N -> p = P ) ) -> E! p e. Prime p || N ) | 
						
							| 36 | 33 35 | syl |  |-  ( ph -> E! p e. Prime p || N ) |