Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c7.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c7.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c7.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c7.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c7.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
aks6d1c7.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c7.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c7.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
10 |
|
aks6d1c7.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
11 |
|
aks6d1c7.11 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
12 |
|
aks6d1c7.12 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
13 |
|
aks6d1c7.13 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
14 |
|
aks6d1c7.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝐾 ∈ Field ) |
16 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑃 ∈ ℙ ) |
17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑅 ∈ ℕ ) |
18 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
19 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑃 ∥ 𝑁 ) |
20 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
21 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
22 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
23 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
24 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
25 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑝 ∈ ℙ ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑝 ∥ 𝑁 ) |
28 |
26 27
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑁 ) ) |
29 |
1 2 15 16 17 18 19 20 9 21 22 23 24 25 28
|
aks6d1c7lem3 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑃 = 𝑝 ) |
30 |
29
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑁 ) → 𝑝 = 𝑃 ) |
31 |
30
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑁 → 𝑝 = 𝑃 ) ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 → 𝑝 = 𝑃 ) ) |
33 |
4 7 32
|
3jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ 𝑁 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 → 𝑝 = 𝑃 ) ) ) |
34 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
35 |
34
|
eqreu |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ 𝑁 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 → 𝑝 = 𝑃 ) ) → ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
36 |
33 35
|
syl |
⊢ ( 𝜑 → ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |