| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c7.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c7.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c7.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c7.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c7.6 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 7 |  | aks6d1c7.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c7.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c7.9 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 10 |  | aks6d1c7.10 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 11 |  | aks6d1c7.11 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 12 |  | aks6d1c7.12 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 13 |  | aks6d1c7.13 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 14 |  | aks6d1c7.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝐾  ∈  Field ) | 
						
							| 16 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑃  ∈  ℙ ) | 
						
							| 17 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑅  ∈  ℕ ) | 
						
							| 18 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 19 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑃  ∥  𝑁 ) | 
						
							| 20 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 21 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 22 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 23 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 24 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 25 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑝  ∈  ℙ ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑝  ∥  𝑁 ) | 
						
							| 28 | 26 27 | jca | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  𝑁 ) ) | 
						
							| 29 | 1 2 15 16 17 18 19 20 9 21 22 23 24 25 28 | aks6d1c7lem3 | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑃  =  𝑝 ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  𝑁 )  →  𝑝  =  𝑃 ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝑁  →  𝑝  =  𝑃 ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  ℙ ( 𝑝  ∥  𝑁  →  𝑝  =  𝑃 ) ) | 
						
							| 33 | 4 7 32 | 3jca | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  𝑁  ∧  ∀ 𝑝  ∈  ℙ ( 𝑝  ∥  𝑁  →  𝑝  =  𝑃 ) ) ) | 
						
							| 34 |  | breq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  ∥  𝑁  ↔  𝑃  ∥  𝑁 ) ) | 
						
							| 35 | 34 | eqreu | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  𝑁  ∧  ∀ 𝑝  ∈  ℙ ( 𝑝  ∥  𝑁  →  𝑝  =  𝑃 ) )  →  ∃! 𝑝  ∈  ℙ 𝑝  ∥  𝑁 ) | 
						
							| 36 | 33 35 | syl | ⊢ ( 𝜑  →  ∃! 𝑝  ∈  ℙ 𝑝  ∥  𝑁 ) |