| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c7.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c7.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c7.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c7.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c7.6 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 7 |  | aks6d1c7.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c7.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c7.9 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 10 |  | aks6d1c7.10 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 11 |  | aks6d1c7.11 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 12 |  | aks6d1c7.12 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 13 |  | aks6d1c7.13 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 14 |  | aks6d1c7.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c7lem3.1 | ⊢ ( 𝜑  →  ( 𝑄  ∈  ℙ  ∧  𝑄  ∥  𝑁 ) ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑙 ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑖 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  𝑖  =  𝑘 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( 𝑃 ↑ 𝑖 )  =  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  𝑗  =  𝑙 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 24 | 21 23 | oveq12d | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) )  =  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 25 | 16 17 18 19 24 | cbvmpo | ⊢ ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 27 |  | eqid | ⊢ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑣 ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 ) | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑤 ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) | 
						
							| 30 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑣  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ) | 
						
							| 31 | 30 | fveq1d | ⊢ ( 𝑤  =  𝑣  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) ) | 
						
							| 32 | 28 29 31 | cbvmpt | ⊢ ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 ) )  =  ( 𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) ) | 
						
							| 33 |  | eqid | ⊢ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ×  ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) )  =  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ×  ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑔 ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑚 ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ ℎ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑛  =  ℎ  →  ( 𝑚 ‘ 𝑛 )  =  ( 𝑚 ‘ ℎ ) ) | 
						
							| 40 |  | 2fveq3 | ⊢ ( 𝑛  =  ℎ  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) )  =  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑛  =  ℎ  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) )  =  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) | 
						
							| 42 | 39 41 | oveq12d | ⊢ ( 𝑛  =  ℎ  →  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) )  =  ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) | 
						
							| 43 | 37 38 42 | cbvmpt | ⊢ ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) )  =  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑚  =  𝑔  →  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) )  =  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) | 
						
							| 45 |  | simpl | ⊢ ( ( 𝑚  =  𝑔  ∧  ℎ  ∈  ( 0 ... 𝐴 ) )  →  𝑚  =  𝑔 ) | 
						
							| 46 | 45 | fveq1d | ⊢ ( ( 𝑚  =  𝑔  ∧  ℎ  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑚 ‘ ℎ )  =  ( 𝑔 ‘ ℎ ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( 𝑚  =  𝑔  ∧  ℎ  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) )  =  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) | 
						
							| 48 | 47 | mpteq2dva | ⊢ ( 𝑚  =  𝑔  →  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) )  =  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) | 
						
							| 49 | 44 48 | eqtrd | ⊢ ( 𝑚  =  𝑔  →  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) )  =  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝑚  =  𝑔  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) )  =  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) ) | 
						
							| 51 | 35 36 50 | cbvmpt | ⊢ ( 𝑚  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑛  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( ℎ  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) ) | 
						
							| 52 |  | nfcv | ⊢ Ⅎ 𝑢 ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) | 
						
							| 53 |  | nfcv | ⊢ Ⅎ 𝑜 ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) | 
						
							| 54 |  | nfv | ⊢ Ⅎ 𝑜 Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑢 Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) | 
						
							| 56 |  | simpl | ⊢ ( ( 𝑢  =  𝑜  ∧  𝑞  ∈  ( 0 ... 𝐴 ) )  →  𝑢  =  𝑜 ) | 
						
							| 57 | 56 | fveq1d | ⊢ ( ( 𝑢  =  𝑜  ∧  𝑞  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑢 ‘ 𝑞 )  =  ( 𝑜 ‘ 𝑞 ) ) | 
						
							| 58 | 57 | sumeq2dv | ⊢ ( 𝑢  =  𝑜  →  Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 )  =  Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑜 ‘ 𝑞 )  =  ( 𝑜 ‘ 𝑝 ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑝 ( 𝑜 ‘ 𝑞 ) | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑞 ( 𝑜 ‘ 𝑝 ) | 
						
							| 62 | 59 60 61 | cbvsum | ⊢ Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 )  =  Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) | 
						
							| 63 | 62 | a1i | ⊢ ( 𝑢  =  𝑜  →  Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 )  =  Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ) | 
						
							| 64 | 58 63 | eqtrd | ⊢ ( 𝑢  =  𝑜  →  Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 )  =  Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ) | 
						
							| 65 | 25 | eqcomi | ⊢ ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  =  ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) ) | 
						
							| 66 | 65 | a1i | ⊢ ( 𝑢  =  𝑜  →  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  =  ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) ) ) | 
						
							| 67 | 66 | imaeq1d | ⊢ ( 𝑢  =  𝑜  →  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 68 | 67 | imaeq2d | ⊢ ( 𝑢  =  𝑜  →  ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( 𝑢  =  𝑜  →  ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑢  =  𝑜  →  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 )  =  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) | 
						
							| 71 | 64 70 | breq12d | ⊢ ( 𝑢  =  𝑜  →  ( Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 )  ↔  Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) ) | 
						
							| 72 | 52 53 54 55 71 | cbvrabw | ⊢ { 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑞  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) }  =  { 𝑜  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑝  ∈  ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 )  ≤  ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  “  ( ( 𝑖  ∈  ℕ0 ,  𝑗  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑗 ) ) )  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) } | 
						
							| 73 | 1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72 | aks6d1c7lem2 | ⊢ ( 𝜑  →  𝑃  =  𝑄 ) |