Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c7.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c7.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c7.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c7.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c7.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
aks6d1c7.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c7.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c7.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
10 |
|
aks6d1c7.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
11 |
|
aks6d1c7.11 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
12 |
|
aks6d1c7.12 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
13 |
|
aks6d1c7.13 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
14 |
|
aks6d1c7.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c7lem3.1 |
⊢ ( 𝜑 → ( 𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ) ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑙 ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
20 |
|
simpl |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → 𝑖 = 𝑘 ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑃 ↑ 𝑖 ) = ( 𝑃 ↑ 𝑘 ) ) |
22 |
|
simpr |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → 𝑗 = 𝑙 ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
24 |
21 23
|
oveq12d |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
25 |
16 17 18 19 24
|
cbvmpo |
⊢ ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
26 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
27 |
|
eqid |
⊢ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) = ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑣 ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑤 ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) |
30 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑣 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ) |
31 |
30
|
fveq1d |
⊢ ( 𝑤 = 𝑣 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) ) |
32 |
28 29 31
|
cbvmpt |
⊢ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑤 ) ) ‘ 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) ‘ 𝑣 ) ) ‘ 𝑀 ) ) |
33 |
|
eqid |
⊢ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
34 |
|
eqid |
⊢ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) × ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) = ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) × ( 0 ... ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑔 ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) |
37 |
|
nfcv |
⊢ Ⅎ ℎ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑛 = ℎ → ( 𝑚 ‘ 𝑛 ) = ( 𝑚 ‘ ℎ ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑛 = ℎ → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) = ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑛 = ℎ → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) |
42 |
39 41
|
oveq12d |
⊢ ( 𝑛 = ℎ → ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) = ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) |
43 |
37 38 42
|
cbvmpt |
⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) = ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) |
44 |
43
|
a1i |
⊢ ( 𝑚 = 𝑔 → ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) = ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) |
45 |
|
simpl |
⊢ ( ( 𝑚 = 𝑔 ∧ ℎ ∈ ( 0 ... 𝐴 ) ) → 𝑚 = 𝑔 ) |
46 |
45
|
fveq1d |
⊢ ( ( 𝑚 = 𝑔 ∧ ℎ ∈ ( 0 ... 𝐴 ) ) → ( 𝑚 ‘ ℎ ) = ( 𝑔 ‘ ℎ ) ) |
47 |
46
|
oveq1d |
⊢ ( ( 𝑚 = 𝑔 ∧ ℎ ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) = ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) |
48 |
47
|
mpteq2dva |
⊢ ( 𝑚 = 𝑔 → ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) = ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) |
49 |
44 48
|
eqtrd |
⊢ ( 𝑚 = 𝑔 → ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) = ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑚 = 𝑔 → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) = ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) ) |
51 |
35 36 50
|
cbvmpt |
⊢ ( 𝑚 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑚 ‘ 𝑛 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑛 ) ) ) ) ) ) ) = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( ℎ ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ ℎ ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ℎ ) ) ) ) ) ) ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑢 ( ℕ0 ↑m ( 0 ... 𝐴 ) ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑜 ( ℕ0 ↑m ( 0 ... 𝐴 ) ) |
54 |
|
nfv |
⊢ Ⅎ 𝑜 Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) |
55 |
|
nfv |
⊢ Ⅎ 𝑢 Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) |
56 |
|
simpl |
⊢ ( ( 𝑢 = 𝑜 ∧ 𝑞 ∈ ( 0 ... 𝐴 ) ) → 𝑢 = 𝑜 ) |
57 |
56
|
fveq1d |
⊢ ( ( 𝑢 = 𝑜 ∧ 𝑞 ∈ ( 0 ... 𝐴 ) ) → ( 𝑢 ‘ 𝑞 ) = ( 𝑜 ‘ 𝑞 ) ) |
58 |
57
|
sumeq2dv |
⊢ ( 𝑢 = 𝑜 → Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 ) = Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 ) ) |
59 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( 𝑜 ‘ 𝑞 ) = ( 𝑜 ‘ 𝑝 ) ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑝 ( 𝑜 ‘ 𝑞 ) |
61 |
|
nfcv |
⊢ Ⅎ 𝑞 ( 𝑜 ‘ 𝑝 ) |
62 |
59 60 61
|
cbvsum |
⊢ Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 ) = Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) |
63 |
62
|
a1i |
⊢ ( 𝑢 = 𝑜 → Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑞 ) = Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ) |
64 |
58 63
|
eqtrd |
⊢ ( 𝑢 = 𝑜 → Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 ) = Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ) |
65 |
25
|
eqcomi |
⊢ ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) = ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) |
66 |
65
|
a1i |
⊢ ( 𝑢 = 𝑜 → ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) = ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) ) |
67 |
66
|
imaeq1d |
⊢ ( 𝑢 = 𝑜 → ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) |
68 |
67
|
imaeq2d |
⊢ ( 𝑢 = 𝑜 → ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) |
69 |
68
|
fveq2d |
⊢ ( 𝑢 = 𝑜 → ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) = ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝑢 = 𝑜 → ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) = ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) |
71 |
64 70
|
breq12d |
⊢ ( 𝑢 = 𝑜 → ( Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ↔ Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) ) |
72 |
52 53 54 55 71
|
cbvrabw |
⊢ { 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑞 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑞 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) } = { 𝑜 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑝 ∈ ( 0 ... 𝐴 ) ( 𝑜 ‘ 𝑝 ) ≤ ( ( ♯ ‘ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) “ ( ( 𝑖 ∈ ℕ0 , 𝑗 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑗 ) ) ) “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) } |
73 |
1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72
|
aks6d1c7lem2 |
⊢ ( 𝜑 → 𝑃 = 𝑄 ) |