Metamath Proof Explorer


Theorem aks6d1c7lem3

Description: Remove lots of hypotheses now that we have the AKS contradiction. (Contributed by metakunt, 16-May-2025)

Ref Expression
Hypotheses aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c7.2 P = chr K
aks6d1c7.3 φ K Field
aks6d1c7.4 φ P
aks6d1c7.5 φ R
aks6d1c7.6 φ N 3
aks6d1c7.7 φ P N
aks6d1c7.8 φ N gcd R = 1
aks6d1c7.9 A = ϕ R log 2 N
aks6d1c7.10 φ log 2 N 2 < od R N
aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
aks6d1c7.12 φ M mulGrp K PrimRoots R
aks6d1c7.13 φ b 1 A b gcd N = 1
aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c7lem3.1 φ Q Q N
Assertion aks6d1c7lem3 φ P = Q

Proof

Step Hyp Ref Expression
1 aks6d1c7.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c7.2 P = chr K
3 aks6d1c7.3 φ K Field
4 aks6d1c7.4 φ P
5 aks6d1c7.5 φ R
6 aks6d1c7.6 φ N 3
7 aks6d1c7.7 φ P N
8 aks6d1c7.8 φ N gcd R = 1
9 aks6d1c7.9 A = ϕ R log 2 N
10 aks6d1c7.10 φ log 2 N 2 < od R N
11 aks6d1c7.11 φ x Base K P mulGrp K x K RingIso K
12 aks6d1c7.12 φ M mulGrp K PrimRoots R
13 aks6d1c7.13 φ b 1 A b gcd N = 1
14 aks6d1c7.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c7lem3.1 φ Q Q N
16 nfcv _ k P i N P j
17 nfcv _ l P i N P j
18 nfcv _ i P k N P l
19 nfcv _ j P k N P l
20 simpl i = k j = l i = k
21 20 oveq2d i = k j = l P i = P k
22 simpr i = k j = l j = l
23 22 oveq2d i = k j = l N P j = N P l
24 21 23 oveq12d i = k j = l P i N P j = P k N P l
25 16 17 18 19 24 cbvmpo i 0 , j 0 P i N P j = k 0 , l 0 P k N P l
26 eqid ℤRHom /R = ℤRHom /R
27 eqid ℤRHom /R i 0 , j 0 P i N P j 0 × 0 = ℤRHom /R i 0 , j 0 P i N P j 0 × 0
28 nfcv _ v eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n w M
29 nfcv _ w eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n v M
30 2fveq3 w = v eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n w = eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n v
31 30 fveq1d w = v eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n w M = eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n v M
32 28 29 31 cbvmpt w 0 0 A eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n w M = v 0 0 A eval 1 K m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n v M
33 eqid ℤRHom /R i 0 , j 0 P i N P j 0 × 0 = ℤRHom /R i 0 , j 0 P i N P j 0 × 0
34 eqid i 0 , j 0 P i N P j 0 ℤRHom /R i 0 , j 0 P i N P j 0 × 0 × 0 ℤRHom /R i 0 , j 0 P i N P j 0 × 0 = i 0 , j 0 P i N P j 0 ℤRHom /R i 0 , j 0 P i N P j 0 × 0 × 0 ℤRHom /R i 0 , j 0 P i N P j 0 × 0
35 nfcv _ g mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n
36 nfcv _ m mulGrp Poly 1 K h = 0 A g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
37 nfcv _ h m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n
38 nfcv _ n m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
39 fveq2 n = h m n = m h
40 2fveq3 n = h algSc Poly 1 K ℤRHom K n = algSc Poly 1 K ℤRHom K h
41 40 oveq2d n = h var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
42 39 41 oveq12d n = h m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
43 37 38 42 cbvmpt n 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = h 0 A m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
44 43 a1i m = g n 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = h 0 A m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
45 simpl m = g h 0 A m = g
46 45 fveq1d m = g h 0 A m h = g h
47 46 oveq1d m = g h 0 A m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h = g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
48 47 mpteq2dva m = g h 0 A m h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h = h 0 A g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
49 44 48 eqtrd m = g n 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = h 0 A g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
50 49 oveq2d m = g mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = mulGrp Poly 1 K h = 0 A g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
51 35 36 50 cbvmpt m 0 0 A mulGrp Poly 1 K n = 0 A m n mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K n = g 0 0 A mulGrp Poly 1 K h = 0 A g h mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K h
52 nfcv _ u 0 0 A
53 nfcv _ o 0 0 A
54 nfv o q = 0 A u q ℤRHom /R k 0 , l 0 P k N P l 0 × 0 1
55 nfv u p = 0 A o p ℤRHom /R i 0 , j 0 P i N P j 0 × 0 1
56 simpl u = o q 0 A u = o
57 56 fveq1d u = o q 0 A u q = o q
58 57 sumeq2dv u = o q = 0 A u q = q = 0 A o q
59 fveq2 q = p o q = o p
60 nfcv _ p o q
61 nfcv _ q o p
62 59 60 61 cbvsum q = 0 A o q = p = 0 A o p
63 62 a1i u = o q = 0 A o q = p = 0 A o p
64 58 63 eqtrd u = o q = 0 A u q = p = 0 A o p
65 25 eqcomi k 0 , l 0 P k N P l = i 0 , j 0 P i N P j
66 65 a1i u = o k 0 , l 0 P k N P l = i 0 , j 0 P i N P j
67 66 imaeq1d u = o k 0 , l 0 P k N P l 0 × 0 = i 0 , j 0 P i N P j 0 × 0
68 67 imaeq2d u = o ℤRHom /R k 0 , l 0 P k N P l 0 × 0 = ℤRHom /R i 0 , j 0 P i N P j 0 × 0
69 68 fveq2d u = o ℤRHom /R k 0 , l 0 P k N P l 0 × 0 = ℤRHom /R i 0 , j 0 P i N P j 0 × 0
70 69 oveq1d u = o ℤRHom /R k 0 , l 0 P k N P l 0 × 0 1 = ℤRHom /R i 0 , j 0 P i N P j 0 × 0 1
71 64 70 breq12d u = o q = 0 A u q ℤRHom /R k 0 , l 0 P k N P l 0 × 0 1 p = 0 A o p ℤRHom /R i 0 , j 0 P i N P j 0 × 0 1
72 52 53 54 55 71 cbvrabw u 0 0 A | q = 0 A u q ℤRHom /R k 0 , l 0 P k N P l 0 × 0 1 = o 0 0 A | p = 0 A o p ℤRHom /R i 0 , j 0 P i N P j 0 × 0 1
73 1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72 aks6d1c7lem2 φ P = Q