Metamath Proof Explorer


Theorem aks6d1c7lem2

Description: Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers P and Q . (Contributed by metakunt, 16-May-2025)

Ref Expression
Hypotheses aks6d1c7lem2.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c7lem2.2 P = chr K
aks6d1c7lem2.3 φ K Field
aks6d1c7lem2.4 φ P
aks6d1c7lem2.5 φ R
aks6d1c7lem2.6 φ N 3
aks6d1c7lem2.7 φ P N
aks6d1c7lem2.8 φ N gcd R = 1
aks6d1c7lem2.9 E = k 0 , l 0 P k N P l
aks6d1c7lem2.10 L = ℤRHom /R
aks6d1c7lem2.11 D = L E 0 × 0
aks6d1c7lem2.12 A = ϕ R log 2 N
aks6d1c7lem2.13 φ log 2 N 2 < od R N
aks6d1c7lem2.14 φ x Base K P mulGrp K x K RingIso K
aks6d1c7lem2.15 φ M mulGrp K PrimRoots R
aks6d1c7lem2.16 H = h 0 0 A eval 1 K G h M
aks6d1c7lem2.17 B = L E 0 × 0
aks6d1c7lem2.18 C = E 0 B × 0 B
aks6d1c7lem2.19 φ Q Q N
aks6d1c7lem2.20 φ b 1 A b gcd N = 1
aks6d1c7lem2.21 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c7lem2.22 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c7lem2.23 S = s 0 0 A | t = 0 A s t D 1
Assertion aks6d1c7lem2 φ P = Q

Proof

Step Hyp Ref Expression
1 aks6d1c7lem2.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c7lem2.2 P = chr K
3 aks6d1c7lem2.3 φ K Field
4 aks6d1c7lem2.4 φ P
5 aks6d1c7lem2.5 φ R
6 aks6d1c7lem2.6 φ N 3
7 aks6d1c7lem2.7 φ P N
8 aks6d1c7lem2.8 φ N gcd R = 1
9 aks6d1c7lem2.9 E = k 0 , l 0 P k N P l
10 aks6d1c7lem2.10 L = ℤRHom /R
11 aks6d1c7lem2.11 D = L E 0 × 0
12 aks6d1c7lem2.12 A = ϕ R log 2 N
13 aks6d1c7lem2.13 φ log 2 N 2 < od R N
14 aks6d1c7lem2.14 φ x Base K P mulGrp K x K RingIso K
15 aks6d1c7lem2.15 φ M mulGrp K PrimRoots R
16 aks6d1c7lem2.16 H = h 0 0 A eval 1 K G h M
17 aks6d1c7lem2.17 B = L E 0 × 0
18 aks6d1c7lem2.18 C = E 0 B × 0 B
19 aks6d1c7lem2.19 φ Q Q N
20 aks6d1c7lem2.20 φ b 1 A b gcd N = 1
21 aks6d1c7lem2.21 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
22 aks6d1c7lem2.22 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
23 aks6d1c7lem2.23 S = s 0 0 A | t = 0 A s t D 1
24 simpr φ P = Q P = Q
25 3 adantr φ P Q K Field
26 4 adantr φ P Q P
27 5 adantr φ P Q R
28 eluzelz N 3 N
29 6 28 syl φ N
30 0red φ 0
31 3re 3
32 31 a1i φ 3
33 29 zred φ N
34 3pos 0 < 3
35 34 a1i φ 0 < 3
36 eluzle N 3 3 N
37 6 36 syl φ 3 N
38 30 32 33 35 37 ltletrd φ 0 < N
39 29 38 jca φ N 0 < N
40 elnnz N N 0 < N
41 39 40 sylibr φ N
42 41 adantr φ P Q N
43 7 adantr φ P Q P N
44 8 adantr φ P Q N gcd R = 1
45 5 phicld φ ϕ R
46 45 nnred φ ϕ R
47 1red φ 1
48 0le1 0 1
49 48 a1i φ 0 1
50 45 nnge1d φ 1 ϕ R
51 30 47 46 49 50 letrd φ 0 ϕ R
52 46 51 resqrtcld φ ϕ R
53 2re 2
54 53 a1i φ 2
55 2pos 0 < 2
56 55 a1i φ 0 < 2
57 1lt2 1 < 2
58 57 a1i φ 1 < 2
59 47 58 ltned φ 1 2
60 59 necomd φ 2 1
61 54 56 33 38 60 relogbcld φ log 2 N
62 52 61 remulcld φ ϕ R log 2 N
63 62 flcld φ ϕ R log 2 N
64 46 51 sqrtge0d φ 0 ϕ R
65 54 recnd φ 2
66 30 56 gtned φ 2 0
67 logb1 2 2 0 2 1 log 2 1 = 0
68 65 66 60 67 syl3anc φ log 2 1 = 0
69 68 eqcomd φ 0 = log 2 1
70 2z 2
71 70 a1i φ 2
72 54 leidd φ 2 2
73 0lt1 0 < 1
74 73 a1i φ 0 < 1
75 41 nnge1d φ 1 N
76 71 72 47 74 33 38 75 logblebd φ log 2 1 log 2 N
77 69 76 eqbrtrd φ 0 log 2 N
78 52 61 64 77 mulge0d φ 0 ϕ R log 2 N
79 0zd φ 0
80 flge ϕ R log 2 N 0 0 ϕ R log 2 N 0 ϕ R log 2 N
81 62 79 80 syl2anc φ 0 ϕ R log 2 N 0 ϕ R log 2 N
82 78 81 mpbid φ 0 ϕ R log 2 N
83 63 82 jca φ ϕ R log 2 N 0 ϕ R log 2 N
84 elnn0z ϕ R log 2 N 0 ϕ R log 2 N 0 ϕ R log 2 N
85 83 84 sylibr φ ϕ R log 2 N 0
86 12 85 eqeltrid φ A 0
87 86 adantr φ P Q A 0
88 22 adantr φ P Q a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
89 14 adantr φ P Q x Base K P mulGrp K x K RingIso K
90 15 adantr φ P Q M mulGrp K PrimRoots R
91 19 simpld φ Q
92 91 adantr φ P Q Q
93 19 simprd φ Q N
94 93 adantr φ P Q Q N
95 simpr φ P Q P Q
96 92 94 95 3jca φ P Q Q Q N P Q
97 1 2 25 26 27 42 43 44 21 87 9 10 88 89 90 16 17 18 96 aks6d1c2 φ P Q H 0 0 A N B
98 41 nnzd φ N
99 eqid /R = /R
100 41 4 7 5 8 9 10 99 hashscontpowcl φ L E 0 × 0 0
101 100 nn0red φ L E 0 × 0
102 100 nn0ge0d φ 0 L E 0 × 0
103 101 102 resqrtcld φ L E 0 × 0
104 103 flcld φ L E 0 × 0
105 101 102 sqrtge0d φ 0 L E 0 × 0
106 flge L E 0 × 0 0 0 L E 0 × 0 0 L E 0 × 0
107 103 79 106 syl2anc φ 0 L E 0 × 0 0 L E 0 × 0
108 105 107 mpbid φ 0 L E 0 × 0
109 104 108 jca φ L E 0 × 0 0 L E 0 × 0
110 elnn0z L E 0 × 0 0 L E 0 × 0 0 L E 0 × 0
111 109 110 sylibr φ L E 0 × 0 0
112 17 111 eqeltrid φ B 0
113 98 112 zexpcld φ N B
114 113 zred φ N B
115 114 adantr φ P Q N B
116 115 rexrd φ P Q N B *
117 100 adantr φ P Q L E 0 × 0 0
118 11 117 eqeltrid φ P Q D 0
119 118 87 nn0addcld φ P Q D + A 0
120 118 nn0zd φ P Q D
121 1zzd φ P Q 1
122 120 121 zsubcld φ P Q D 1
123 bccl D + A 0 D 1 ( D + A D 1 ) 0
124 119 122 123 syl2anc φ P Q ( D + A D 1 ) 0
125 124 nn0red φ P Q ( D + A D 1 )
126 125 rexrd φ P Q ( D + A D 1 ) *
127 ovexd φ P Q 0 0 A V
128 127 mptexd φ P Q h 0 0 A eval 1 K G h M V
129 16 128 eqeltrid φ P Q H V
130 129 imaexd φ P Q H 0 0 A V
131 hashxrcl H 0 0 A V H 0 0 A *
132 130 131 syl φ P Q H 0 0 A *
133 eqcom D = L E 0 × 0 L E 0 × 0 = D
134 11 133 mpbi L E 0 × 0 = D
135 134 fveq2i L E 0 × 0 = D
136 135 fveq2i L E 0 × 0 = D
137 17 136 eqtri B = D
138 137 a1i φ P Q B = D
139 138 oveq2d φ P Q N B = N D
140 6 adantr φ P Q N 3
141 13 adantr φ P Q log 2 N 2 < od R N
142 26 27 140 43 44 9 10 11 12 141 aks6d1c7lem1 φ P Q N D < ( D + A D 1 )
143 139 142 eqbrtrd φ P Q N B < ( D + A D 1 )
144 20 adantr φ P Q b 1 A b gcd N = 1
145 eqid c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M = c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M
146 eqid j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K = j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K
147 nfcv _ b c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M h
148 nfcv _ h c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M b
149 imaeq2 h = b c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M h = c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M b
150 149 unieqd h = b c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M h = c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M b
151 147 148 150 cbvmpt h Base ring / 𝑠 ring ~ QG c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M -1 0 mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K 𝑠 ran c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M h = b Base ring / 𝑠 ring ~ QG c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M -1 0 mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K 𝑠 ran c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M c c mulGrp K 𝑠 j Base mulGrp K | m Base mulGrp K m + mulGrp K j = 0 mulGrp K M b
152 1 2 25 26 27 42 43 44 144 21 12 9 10 88 89 90 16 11 23 145 146 151 aks6d1c6lem5 φ P Q ( D + A D 1 ) H 0 0 A
153 116 126 132 143 152 xrltletrd φ P Q N B < H 0 0 A
154 xrltnle N B * H 0 0 A * N B < H 0 0 A ¬ H 0 0 A N B
155 116 132 154 syl2anc φ P Q N B < H 0 0 A ¬ H 0 0 A N B
156 153 155 mpbid φ P Q ¬ H 0 0 A N B
157 97 156 pm2.21dd φ P Q P = Q
158 24 157 pm2.61dane φ P = Q