| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c7lem2.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
| 2 |
|
aks6d1c7lem2.2 |
|- P = ( chr ` K ) |
| 3 |
|
aks6d1c7lem2.3 |
|- ( ph -> K e. Field ) |
| 4 |
|
aks6d1c7lem2.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
aks6d1c7lem2.5 |
|- ( ph -> R e. NN ) |
| 6 |
|
aks6d1c7lem2.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 7 |
|
aks6d1c7lem2.7 |
|- ( ph -> P || N ) |
| 8 |
|
aks6d1c7lem2.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 9 |
|
aks6d1c7lem2.9 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 10 |
|
aks6d1c7lem2.10 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
| 11 |
|
aks6d1c7lem2.11 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
| 12 |
|
aks6d1c7lem2.12 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
| 13 |
|
aks6d1c7lem2.13 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
| 14 |
|
aks6d1c7lem2.14 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 15 |
|
aks6d1c7lem2.15 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 16 |
|
aks6d1c7lem2.16 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
| 17 |
|
aks6d1c7lem2.17 |
|- B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
| 18 |
|
aks6d1c7lem2.18 |
|- C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
| 19 |
|
aks6d1c7lem2.19 |
|- ( ph -> ( Q e. Prime /\ Q || N ) ) |
| 20 |
|
aks6d1c7lem2.20 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
| 21 |
|
aks6d1c7lem2.21 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 22 |
|
aks6d1c7lem2.22 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 23 |
|
aks6d1c7lem2.23 |
|- S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } |
| 24 |
|
simpr |
|- ( ( ph /\ P = Q ) -> P = Q ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ P =/= Q ) -> K e. Field ) |
| 26 |
4
|
adantr |
|- ( ( ph /\ P =/= Q ) -> P e. Prime ) |
| 27 |
5
|
adantr |
|- ( ( ph /\ P =/= Q ) -> R e. NN ) |
| 28 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 29 |
6 28
|
syl |
|- ( ph -> N e. ZZ ) |
| 30 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 31 |
|
3re |
|- 3 e. RR |
| 32 |
31
|
a1i |
|- ( ph -> 3 e. RR ) |
| 33 |
29
|
zred |
|- ( ph -> N e. RR ) |
| 34 |
|
3pos |
|- 0 < 3 |
| 35 |
34
|
a1i |
|- ( ph -> 0 < 3 ) |
| 36 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 37 |
6 36
|
syl |
|- ( ph -> 3 <_ N ) |
| 38 |
30 32 33 35 37
|
ltletrd |
|- ( ph -> 0 < N ) |
| 39 |
29 38
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
| 40 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
| 41 |
39 40
|
sylibr |
|- ( ph -> N e. NN ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ P =/= Q ) -> N e. NN ) |
| 43 |
7
|
adantr |
|- ( ( ph /\ P =/= Q ) -> P || N ) |
| 44 |
8
|
adantr |
|- ( ( ph /\ P =/= Q ) -> ( N gcd R ) = 1 ) |
| 45 |
5
|
phicld |
|- ( ph -> ( phi ` R ) e. NN ) |
| 46 |
45
|
nnred |
|- ( ph -> ( phi ` R ) e. RR ) |
| 47 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 48 |
|
0le1 |
|- 0 <_ 1 |
| 49 |
48
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 50 |
45
|
nnge1d |
|- ( ph -> 1 <_ ( phi ` R ) ) |
| 51 |
30 47 46 49 50
|
letrd |
|- ( ph -> 0 <_ ( phi ` R ) ) |
| 52 |
46 51
|
resqrtcld |
|- ( ph -> ( sqrt ` ( phi ` R ) ) e. RR ) |
| 53 |
|
2re |
|- 2 e. RR |
| 54 |
53
|
a1i |
|- ( ph -> 2 e. RR ) |
| 55 |
|
2pos |
|- 0 < 2 |
| 56 |
55
|
a1i |
|- ( ph -> 0 < 2 ) |
| 57 |
|
1lt2 |
|- 1 < 2 |
| 58 |
57
|
a1i |
|- ( ph -> 1 < 2 ) |
| 59 |
47 58
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 60 |
59
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 61 |
54 56 33 38 60
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 62 |
52 61
|
remulcld |
|- ( ph -> ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR ) |
| 63 |
62
|
flcld |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ ) |
| 64 |
46 51
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( phi ` R ) ) ) |
| 65 |
54
|
recnd |
|- ( ph -> 2 e. CC ) |
| 66 |
30 56
|
gtned |
|- ( ph -> 2 =/= 0 ) |
| 67 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
| 68 |
65 66 60 67
|
syl3anc |
|- ( ph -> ( 2 logb 1 ) = 0 ) |
| 69 |
68
|
eqcomd |
|- ( ph -> 0 = ( 2 logb 1 ) ) |
| 70 |
|
2z |
|- 2 e. ZZ |
| 71 |
70
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 72 |
54
|
leidd |
|- ( ph -> 2 <_ 2 ) |
| 73 |
|
0lt1 |
|- 0 < 1 |
| 74 |
73
|
a1i |
|- ( ph -> 0 < 1 ) |
| 75 |
41
|
nnge1d |
|- ( ph -> 1 <_ N ) |
| 76 |
71 72 47 74 33 38 75
|
logblebd |
|- ( ph -> ( 2 logb 1 ) <_ ( 2 logb N ) ) |
| 77 |
69 76
|
eqbrtrd |
|- ( ph -> 0 <_ ( 2 logb N ) ) |
| 78 |
52 61 64 77
|
mulge0d |
|- ( ph -> 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
| 79 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 80 |
|
flge |
|- ( ( ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
| 81 |
62 79 80
|
syl2anc |
|- ( ph -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
| 82 |
78 81
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
| 83 |
63 82
|
jca |
|- ( ph -> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
| 84 |
|
elnn0z |
|- ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
| 85 |
83 84
|
sylibr |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 ) |
| 86 |
12 85
|
eqeltrid |
|- ( ph -> A e. NN0 ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ P =/= Q ) -> A e. NN0 ) |
| 88 |
22
|
adantr |
|- ( ( ph /\ P =/= Q ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 89 |
14
|
adantr |
|- ( ( ph /\ P =/= Q ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 90 |
15
|
adantr |
|- ( ( ph /\ P =/= Q ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 91 |
19
|
simpld |
|- ( ph -> Q e. Prime ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ P =/= Q ) -> Q e. Prime ) |
| 93 |
19
|
simprd |
|- ( ph -> Q || N ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ P =/= Q ) -> Q || N ) |
| 95 |
|
simpr |
|- ( ( ph /\ P =/= Q ) -> P =/= Q ) |
| 96 |
92 94 95
|
3jca |
|- ( ( ph /\ P =/= Q ) -> ( Q e. Prime /\ Q || N /\ P =/= Q ) ) |
| 97 |
1 2 25 26 27 42 43 44 21 87 9 10 88 89 90 16 17 18 96
|
aks6d1c2 |
|- ( ( ph /\ P =/= Q ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |
| 98 |
41
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 99 |
|
eqid |
|- ( Z/nZ ` R ) = ( Z/nZ ` R ) |
| 100 |
41 4 7 5 8 9 10 99
|
hashscontpowcl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
| 101 |
100
|
nn0red |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
| 102 |
100
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
| 103 |
101 102
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
| 104 |
103
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) |
| 105 |
101 102
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
| 106 |
|
flge |
|- ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 107 |
103 79 106
|
syl2anc |
|- ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 108 |
105 107
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
| 109 |
104 108
|
jca |
|- ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 110 |
|
elnn0z |
|- ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
| 111 |
109 110
|
sylibr |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) |
| 112 |
17 111
|
eqeltrid |
|- ( ph -> B e. NN0 ) |
| 113 |
98 112
|
zexpcld |
|- ( ph -> ( N ^ B ) e. ZZ ) |
| 114 |
113
|
zred |
|- ( ph -> ( N ^ B ) e. RR ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ P =/= Q ) -> ( N ^ B ) e. RR ) |
| 116 |
115
|
rexrd |
|- ( ( ph /\ P =/= Q ) -> ( N ^ B ) e. RR* ) |
| 117 |
100
|
adantr |
|- ( ( ph /\ P =/= Q ) -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
| 118 |
11 117
|
eqeltrid |
|- ( ( ph /\ P =/= Q ) -> D e. NN0 ) |
| 119 |
118 87
|
nn0addcld |
|- ( ( ph /\ P =/= Q ) -> ( D + A ) e. NN0 ) |
| 120 |
118
|
nn0zd |
|- ( ( ph /\ P =/= Q ) -> D e. ZZ ) |
| 121 |
|
1zzd |
|- ( ( ph /\ P =/= Q ) -> 1 e. ZZ ) |
| 122 |
120 121
|
zsubcld |
|- ( ( ph /\ P =/= Q ) -> ( D - 1 ) e. ZZ ) |
| 123 |
|
bccl |
|- ( ( ( D + A ) e. NN0 /\ ( D - 1 ) e. ZZ ) -> ( ( D + A ) _C ( D - 1 ) ) e. NN0 ) |
| 124 |
119 122 123
|
syl2anc |
|- ( ( ph /\ P =/= Q ) -> ( ( D + A ) _C ( D - 1 ) ) e. NN0 ) |
| 125 |
124
|
nn0red |
|- ( ( ph /\ P =/= Q ) -> ( ( D + A ) _C ( D - 1 ) ) e. RR ) |
| 126 |
125
|
rexrd |
|- ( ( ph /\ P =/= Q ) -> ( ( D + A ) _C ( D - 1 ) ) e. RR* ) |
| 127 |
|
ovexd |
|- ( ( ph /\ P =/= Q ) -> ( NN0 ^m ( 0 ... A ) ) e. _V ) |
| 128 |
127
|
mptexd |
|- ( ( ph /\ P =/= Q ) -> ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) e. _V ) |
| 129 |
16 128
|
eqeltrid |
|- ( ( ph /\ P =/= Q ) -> H e. _V ) |
| 130 |
129
|
imaexd |
|- ( ( ph /\ P =/= Q ) -> ( H " ( NN0 ^m ( 0 ... A ) ) ) e. _V ) |
| 131 |
|
hashxrcl |
|- ( ( H " ( NN0 ^m ( 0 ... A ) ) ) e. _V -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. RR* ) |
| 132 |
130 131
|
syl |
|- ( ( ph /\ P =/= Q ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. RR* ) |
| 133 |
|
eqcom |
|- ( D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = D ) |
| 134 |
11 133
|
mpbi |
|- ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = D |
| 135 |
134
|
fveq2i |
|- ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) = ( sqrt ` D ) |
| 136 |
135
|
fveq2i |
|- ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( |_ ` ( sqrt ` D ) ) |
| 137 |
17 136
|
eqtri |
|- B = ( |_ ` ( sqrt ` D ) ) |
| 138 |
137
|
a1i |
|- ( ( ph /\ P =/= Q ) -> B = ( |_ ` ( sqrt ` D ) ) ) |
| 139 |
138
|
oveq2d |
|- ( ( ph /\ P =/= Q ) -> ( N ^ B ) = ( N ^ ( |_ ` ( sqrt ` D ) ) ) ) |
| 140 |
6
|
adantr |
|- ( ( ph /\ P =/= Q ) -> N e. ( ZZ>= ` 3 ) ) |
| 141 |
13
|
adantr |
|- ( ( ph /\ P =/= Q ) -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
| 142 |
26 27 140 43 44 9 10 11 12 141
|
aks6d1c7lem1 |
|- ( ( ph /\ P =/= Q ) -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( D + A ) _C ( D - 1 ) ) ) |
| 143 |
139 142
|
eqbrtrd |
|- ( ( ph /\ P =/= Q ) -> ( N ^ B ) < ( ( D + A ) _C ( D - 1 ) ) ) |
| 144 |
20
|
adantr |
|- ( ( ph /\ P =/= Q ) -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
| 145 |
|
eqid |
|- ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) = ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) |
| 146 |
|
eqid |
|- { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } = { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } |
| 147 |
|
nfcv |
|- F/_ b U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " h ) |
| 148 |
|
nfcv |
|- F/_ h U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " b ) |
| 149 |
|
imaeq2 |
|- ( h = b -> ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " h ) = ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " b ) ) |
| 150 |
149
|
unieqd |
|- ( h = b -> U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " h ) = U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " b ) ) |
| 151 |
147 148 150
|
cbvmpt |
|- ( h e. ( Base ` ( ZZring /s ( ZZring ~QG ( `' ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " { ( 0g ` ( ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) |`s ran ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) ) ) } ) ) ) ) |-> U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " h ) ) = ( b e. ( Base ` ( ZZring /s ( ZZring ~QG ( `' ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " { ( 0g ` ( ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) |`s ran ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) ) ) } ) ) ) ) |-> U. ( ( c e. ZZ |-> ( c ( .g ` ( ( mulGrp ` K ) |`s { j e. ( Base ` ( mulGrp ` K ) ) | E. m e. ( Base ` ( mulGrp ` K ) ) ( m ( +g ` ( mulGrp ` K ) ) j ) = ( 0g ` ( mulGrp ` K ) ) } ) ) M ) ) " b ) ) |
| 152 |
1 2 25 26 27 42 43 44 144 21 12 9 10 88 89 90 16 11 23 145 146 151
|
aks6d1c6lem5 |
|- ( ( ph /\ P =/= Q ) -> ( ( D + A ) _C ( D - 1 ) ) <_ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) ) |
| 153 |
116 126 132 143 152
|
xrltletrd |
|- ( ( ph /\ P =/= Q ) -> ( N ^ B ) < ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) ) |
| 154 |
|
xrltnle |
|- ( ( ( N ^ B ) e. RR* /\ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) e. RR* ) -> ( ( N ^ B ) < ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <-> -. ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) |
| 155 |
116 132 154
|
syl2anc |
|- ( ( ph /\ P =/= Q ) -> ( ( N ^ B ) < ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <-> -. ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) |
| 156 |
153 155
|
mpbid |
|- ( ( ph /\ P =/= Q ) -> -. ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |
| 157 |
97 156
|
pm2.21dd |
|- ( ( ph /\ P =/= Q ) -> P = Q ) |
| 158 |
24 157
|
pm2.61dane |
|- ( ph -> P = Q ) |