| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c7.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c7.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c7.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c7.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c7.6 |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 7 |  | aks6d1c7.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c7.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c7.9 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 10 |  | aks6d1c7.10 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 11 |  | aks6d1c7.11 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 12 |  | aks6d1c7.12 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 13 |  | aks6d1c7.13 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 14 |  | aks6d1c7.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c7lem3.1 |  |-  ( ph -> ( Q e. Prime /\ Q || N ) ) | 
						
							| 16 |  | nfcv |  |-  F/_ k ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) | 
						
							| 17 |  | nfcv |  |-  F/_ l ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) | 
						
							| 18 |  | nfcv |  |-  F/_ i ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) | 
						
							| 19 |  | nfcv |  |-  F/_ j ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) | 
						
							| 20 |  | simpl |  |-  ( ( i = k /\ j = l ) -> i = k ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( i = k /\ j = l ) -> ( P ^ i ) = ( P ^ k ) ) | 
						
							| 22 |  | simpr |  |-  ( ( i = k /\ j = l ) -> j = l ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( i = k /\ j = l ) -> ( ( N / P ) ^ j ) = ( ( N / P ) ^ l ) ) | 
						
							| 24 | 21 23 | oveq12d |  |-  ( ( i = k /\ j = l ) -> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 25 | 16 17 18 19 24 | cbvmpo |  |-  ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 26 |  | eqid |  |-  ( ZRHom ` ( Z/nZ ` R ) ) = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 27 |  | eqid |  |-  ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) | 
						
							| 28 |  | nfcv |  |-  F/_ v ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) | 
						
							| 29 |  | nfcv |  |-  F/_ w ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) | 
						
							| 30 |  | 2fveq3 |  |-  ( w = v -> ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) = ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ) | 
						
							| 31 | 30 | fveq1d |  |-  ( w = v -> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) = ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) ) | 
						
							| 32 | 28 29 31 | cbvmpt |  |-  ( w e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) ) = ( v e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) ) | 
						
							| 33 |  | eqid |  |-  ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) = ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 34 |  | eqid |  |-  ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) X. ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) = ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) X. ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 35 |  | nfcv |  |-  F/_ g ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) | 
						
							| 36 |  | nfcv |  |-  F/_ m ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) | 
						
							| 37 |  | nfcv |  |-  F/_ h ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) | 
						
							| 38 |  | nfcv |  |-  F/_ n ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) | 
						
							| 39 |  | fveq2 |  |-  ( n = h -> ( m ` n ) = ( m ` h ) ) | 
						
							| 40 |  | 2fveq3 |  |-  ( n = h -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( n = h -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) | 
						
							| 42 | 39 41 | oveq12d |  |-  ( n = h -> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) = ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) | 
						
							| 43 | 37 38 42 | cbvmpt |  |-  ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) | 
						
							| 44 | 43 | a1i |  |-  ( m = g -> ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) | 
						
							| 45 |  | simpl |  |-  ( ( m = g /\ h e. ( 0 ... A ) ) -> m = g ) | 
						
							| 46 | 45 | fveq1d |  |-  ( ( m = g /\ h e. ( 0 ... A ) ) -> ( m ` h ) = ( g ` h ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( m = g /\ h e. ( 0 ... A ) ) -> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) = ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) | 
						
							| 48 | 47 | mpteq2dva |  |-  ( m = g -> ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) | 
						
							| 49 | 44 48 | eqtrd |  |-  ( m = g -> ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( m = g -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) ) | 
						
							| 51 | 35 36 50 | cbvmpt |  |-  ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) ) | 
						
							| 52 |  | nfcv |  |-  F/_ u ( NN0 ^m ( 0 ... A ) ) | 
						
							| 53 |  | nfcv |  |-  F/_ o ( NN0 ^m ( 0 ... A ) ) | 
						
							| 54 |  | nfv |  |-  F/ o sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) | 
						
							| 55 |  | nfv |  |-  F/ u sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) | 
						
							| 56 |  | simpl |  |-  ( ( u = o /\ q e. ( 0 ... A ) ) -> u = o ) | 
						
							| 57 | 56 | fveq1d |  |-  ( ( u = o /\ q e. ( 0 ... A ) ) -> ( u ` q ) = ( o ` q ) ) | 
						
							| 58 | 57 | sumeq2dv |  |-  ( u = o -> sum_ q e. ( 0 ... A ) ( u ` q ) = sum_ q e. ( 0 ... A ) ( o ` q ) ) | 
						
							| 59 |  | fveq2 |  |-  ( q = p -> ( o ` q ) = ( o ` p ) ) | 
						
							| 60 |  | nfcv |  |-  F/_ p ( o ` q ) | 
						
							| 61 |  | nfcv |  |-  F/_ q ( o ` p ) | 
						
							| 62 | 59 60 61 | cbvsum |  |-  sum_ q e. ( 0 ... A ) ( o ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) | 
						
							| 63 | 62 | a1i |  |-  ( u = o -> sum_ q e. ( 0 ... A ) ( o ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) ) | 
						
							| 64 | 58 63 | eqtrd |  |-  ( u = o -> sum_ q e. ( 0 ... A ) ( u ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) ) | 
						
							| 65 | 25 | eqcomi |  |-  ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) | 
						
							| 66 | 65 | a1i |  |-  ( u = o -> ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) ) | 
						
							| 67 | 66 | imaeq1d |  |-  ( u = o -> ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) = ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) | 
						
							| 68 | 67 | imaeq2d |  |-  ( u = o -> ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) = ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( u = o -> ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( u = o -> ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) = ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) ) | 
						
							| 71 | 64 70 | breq12d |  |-  ( u = o -> ( sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) <-> sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) | 
						
							| 72 | 52 53 54 55 71 | cbvrabw |  |-  { u e. ( NN0 ^m ( 0 ... A ) ) | sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) } = { o e. ( NN0 ^m ( 0 ... A ) ) | sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) } | 
						
							| 73 | 1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72 | aks6d1c7lem2 |  |-  ( ph -> P = Q ) |