Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c7.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c7.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c7.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c7.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c7.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
7 |
|
aks6d1c7.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c7.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c7.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
10 |
|
aks6d1c7.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
11 |
|
aks6d1c7.11 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
12 |
|
aks6d1c7.12 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
13 |
|
aks6d1c7.13 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
14 |
|
aks6d1c7.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
15 |
|
aks6d1c7lem3.1 |
|- ( ph -> ( Q e. Prime /\ Q || N ) ) |
16 |
|
nfcv |
|- F/_ k ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) |
17 |
|
nfcv |
|- F/_ l ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) |
18 |
|
nfcv |
|- F/_ i ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) |
19 |
|
nfcv |
|- F/_ j ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) |
20 |
|
simpl |
|- ( ( i = k /\ j = l ) -> i = k ) |
21 |
20
|
oveq2d |
|- ( ( i = k /\ j = l ) -> ( P ^ i ) = ( P ^ k ) ) |
22 |
|
simpr |
|- ( ( i = k /\ j = l ) -> j = l ) |
23 |
22
|
oveq2d |
|- ( ( i = k /\ j = l ) -> ( ( N / P ) ^ j ) = ( ( N / P ) ^ l ) ) |
24 |
21 23
|
oveq12d |
|- ( ( i = k /\ j = l ) -> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
25 |
16 17 18 19 24
|
cbvmpo |
|- ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
26 |
|
eqid |
|- ( ZRHom ` ( Z/nZ ` R ) ) = ( ZRHom ` ( Z/nZ ` R ) ) |
27 |
|
eqid |
|- ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) |
28 |
|
nfcv |
|- F/_ v ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) |
29 |
|
nfcv |
|- F/_ w ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) |
30 |
|
2fveq3 |
|- ( w = v -> ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) = ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ) |
31 |
30
|
fveq1d |
|- ( w = v -> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) = ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) ) |
32 |
28 29 31
|
cbvmpt |
|- ( w e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` w ) ) ` M ) ) = ( v e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) ` v ) ) ` M ) ) |
33 |
|
eqid |
|- ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) = ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) |
34 |
|
eqid |
|- ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) X. ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) = ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) X. ( 0 ... ( |_ ` ( sqrt ` ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
35 |
|
nfcv |
|- F/_ g ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) |
36 |
|
nfcv |
|- F/_ m ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) |
37 |
|
nfcv |
|- F/_ h ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) |
38 |
|
nfcv |
|- F/_ n ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) |
39 |
|
fveq2 |
|- ( n = h -> ( m ` n ) = ( m ` h ) ) |
40 |
|
2fveq3 |
|- ( n = h -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) |
41 |
40
|
oveq2d |
|- ( n = h -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) |
42 |
39 41
|
oveq12d |
|- ( n = h -> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) = ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) |
43 |
37 38 42
|
cbvmpt |
|- ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) |
44 |
43
|
a1i |
|- ( m = g -> ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) |
45 |
|
simpl |
|- ( ( m = g /\ h e. ( 0 ... A ) ) -> m = g ) |
46 |
45
|
fveq1d |
|- ( ( m = g /\ h e. ( 0 ... A ) ) -> ( m ` h ) = ( g ` h ) ) |
47 |
46
|
oveq1d |
|- ( ( m = g /\ h e. ( 0 ... A ) ) -> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) = ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) |
48 |
47
|
mpteq2dva |
|- ( m = g -> ( h e. ( 0 ... A ) |-> ( ( m ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) |
49 |
44 48
|
eqtrd |
|- ( m = g -> ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) = ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) |
50 |
49
|
oveq2d |
|- ( m = g -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) ) |
51 |
35 36 50
|
cbvmpt |
|- ( m e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( n e. ( 0 ... A ) |-> ( ( m ` n ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` n ) ) ) ) ) ) ) = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( h e. ( 0 ... A ) |-> ( ( g ` h ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` h ) ) ) ) ) ) ) |
52 |
|
nfcv |
|- F/_ u ( NN0 ^m ( 0 ... A ) ) |
53 |
|
nfcv |
|- F/_ o ( NN0 ^m ( 0 ... A ) ) |
54 |
|
nfv |
|- F/ o sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) |
55 |
|
nfv |
|- F/ u sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) |
56 |
|
simpl |
|- ( ( u = o /\ q e. ( 0 ... A ) ) -> u = o ) |
57 |
56
|
fveq1d |
|- ( ( u = o /\ q e. ( 0 ... A ) ) -> ( u ` q ) = ( o ` q ) ) |
58 |
57
|
sumeq2dv |
|- ( u = o -> sum_ q e. ( 0 ... A ) ( u ` q ) = sum_ q e. ( 0 ... A ) ( o ` q ) ) |
59 |
|
fveq2 |
|- ( q = p -> ( o ` q ) = ( o ` p ) ) |
60 |
|
nfcv |
|- F/_ p ( o ` q ) |
61 |
|
nfcv |
|- F/_ q ( o ` p ) |
62 |
59 60 61
|
cbvsum |
|- sum_ q e. ( 0 ... A ) ( o ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) |
63 |
62
|
a1i |
|- ( u = o -> sum_ q e. ( 0 ... A ) ( o ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) ) |
64 |
58 63
|
eqtrd |
|- ( u = o -> sum_ q e. ( 0 ... A ) ( u ` q ) = sum_ p e. ( 0 ... A ) ( o ` p ) ) |
65 |
25
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) |
66 |
65
|
a1i |
|- ( u = o -> ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) ) |
67 |
66
|
imaeq1d |
|- ( u = o -> ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) = ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) |
68 |
67
|
imaeq2d |
|- ( u = o -> ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) = ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) |
69 |
68
|
fveq2d |
|- ( u = o -> ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) ) |
70 |
69
|
oveq1d |
|- ( u = o -> ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) = ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) ) |
71 |
64 70
|
breq12d |
|- ( u = o -> ( sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) <-> sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) |
72 |
52 53 54 55 71
|
cbvrabw |
|- { u e. ( NN0 ^m ( 0 ... A ) ) | sum_ q e. ( 0 ... A ) ( u ` q ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) } = { o e. ( NN0 ^m ( 0 ... A ) ) | sum_ p e. ( 0 ... A ) ( o ` p ) <_ ( ( # ` ( ( ZRHom ` ( Z/nZ ` R ) ) " ( ( i e. NN0 , j e. NN0 |-> ( ( P ^ i ) x. ( ( N / P ) ^ j ) ) ) " ( NN0 X. NN0 ) ) ) ) - 1 ) } |
73 |
1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72
|
aks6d1c7lem2 |
|- ( ph -> P = Q ) |