| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6lem5.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c6lem5.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c6lem5.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c6lem5.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c6lem5.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c6lem5.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c6lem5.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c6lem5.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c6lem5.9 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 10 |  | aks6d1c6lem5.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6lem5.11 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 12 |  | aksaks6dlem5.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 13 |  | aks6d1c6lem5.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 14 |  | aks6d1c6lem5.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c6lem5.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 16 |  | aks6d1c6lem5.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 17 |  | aks6d1c6lem5.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 18 |  | aks6d1c6lem5.18 |  |-  D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6lem5.19 |  |-  S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } | 
						
							| 20 |  | aks6d1c6lem5.20 |  |-  J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 21 |  | aks6d1c6lem5.22 |  |-  U = { m e. ( Base ` ( mulGrp ` K ) ) | E. n e. ( Base ` ( mulGrp ` K ) ) ( n ( +g ` ( mulGrp ` K ) ) m ) = ( 0g ` ( mulGrp ` K ) ) } | 
						
							| 22 |  | aks6d1c6lem5.23 |  |-  X = ( b e. ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) |-> U. ( J " b ) ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) = ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) | 
						
							| 24 | 3 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 25 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 26 | 25 | crngmgp |  |-  ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 27 | 24 26 | syl |  |-  ( ph -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 28 | 27 5 21 20 16 | aks6d1c6isolem2 |  |-  ( ph -> J e. ( ZZring GrpHom ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 29 |  | eqid |  |-  ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) = ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) | 
						
							| 30 |  | eqid |  |-  ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) = ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) | 
						
							| 31 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 32 |  | nfcv |  |-  F/_ c [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) | 
						
							| 33 |  | nfcv |  |-  F/_ d [ c ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) | 
						
							| 34 |  | eceq1 |  |-  ( d = c -> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) = [ c ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) | 
						
							| 35 | 32 33 34 | cbvmpt |  |-  ( d e. ZZ |-> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) = ( c e. ZZ |-> [ c ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) | 
						
							| 36 | 23 28 29 30 22 31 35 | ghmquskerco |  |-  ( ph -> J = ( X o. ( d e. ZZ |-> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) | 
						
							| 37 |  | eqid |  |-  ( RSpan ` ZZring ) = ( RSpan ` ZZring ) | 
						
							| 38 | 27 5 21 20 16 37 | aks6d1c6isolem3 |  |-  ( ph -> ( ( RSpan ` ZZring ) ` { R } ) = ( `' J " { ( 0g ` ( ( mulGrp ` K ) |`s U ) ) } ) ) | 
						
							| 39 | 27 5 21 | primrootsunit |  |-  ( ph -> ( ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) /\ ( ( mulGrp ` K ) |`s U ) e. Abel ) ) | 
						
							| 40 | 39 | simprd |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. Abel ) | 
						
							| 41 | 40 | ablgrpd |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. Grp ) | 
						
							| 42 | 41 | grpmndd |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. Mnd ) | 
						
							| 43 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ w = 0 ) -> w = 0 ) | 
						
							| 45 | 44 | fveqeq2d |  |-  ( ( ph /\ w = 0 ) -> ( ( J ` w ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) <-> ( J ` 0 ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 46 | 20 | a1i |  |-  ( ph -> J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ j = 0 ) -> j = 0 ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ph /\ j = 0 ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0 ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 49 | 39 | simpld |  |-  ( ph -> ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) | 
						
							| 50 | 16 49 | eleqtrd |  |-  ( ph -> M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) | 
						
							| 51 | 40 | ablcmnd |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. CMnd ) | 
						
							| 52 | 5 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 53 |  | eqid |  |-  ( .g ` ( ( mulGrp ` K ) |`s U ) ) = ( .g ` ( ( mulGrp ` K ) |`s U ) ) | 
						
							| 54 | 51 52 53 | isprimroot |  |-  ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) <-> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || l ) ) ) ) | 
						
							| 55 | 54 | biimpd |  |-  ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || l ) ) ) ) | 
						
							| 56 | 50 55 | mpd |  |-  ( ph -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || l ) ) ) | 
						
							| 57 | 56 | simp1d |  |-  ( ph -> M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 58 |  | eqid |  |-  ( Base ` ( ( mulGrp ` K ) |`s U ) ) = ( Base ` ( ( mulGrp ` K ) |`s U ) ) | 
						
							| 59 |  | eqid |  |-  ( 0g ` ( ( mulGrp ` K ) |`s U ) ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) | 
						
							| 60 | 58 59 53 | mulg0 |  |-  ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) -> ( 0 ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 61 | 57 60 | syl |  |-  ( ph -> ( 0 ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ j = 0 ) -> ( 0 ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 63 | 48 62 | eqtrd |  |-  ( ( ph /\ j = 0 ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 64 |  | fvexd |  |-  ( ph -> ( 0g ` ( ( mulGrp ` K ) |`s U ) ) e. _V ) | 
						
							| 65 | 46 63 43 64 | fvmptd |  |-  ( ph -> ( J ` 0 ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 66 | 43 45 65 | rspcedvd |  |-  ( ph -> E. w e. ZZ ( J ` w ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 67 | 41 | adantr |  |-  ( ( ph /\ j e. ZZ ) -> ( ( mulGrp ` K ) |`s U ) e. Grp ) | 
						
							| 68 |  | simpr |  |-  ( ( ph /\ j e. ZZ ) -> j e. ZZ ) | 
						
							| 69 | 57 | adantr |  |-  ( ( ph /\ j e. ZZ ) -> M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 70 | 58 53 67 68 69 | mulgcld |  |-  ( ( ph /\ j e. ZZ ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 71 | 70 20 | fmptd |  |-  ( ph -> J : ZZ --> ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 72 | 71 | ffnd |  |-  ( ph -> J Fn ZZ ) | 
						
							| 73 |  | fvelrnb |  |-  ( J Fn ZZ -> ( ( 0g ` ( ( mulGrp ` K ) |`s U ) ) e. ran J <-> E. w e. ZZ ( J ` w ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> ( ( 0g ` ( ( mulGrp ` K ) |`s U ) ) e. ran J <-> E. w e. ZZ ( J ` w ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 75 | 66 74 | mpbird |  |-  ( ph -> ( 0g ` ( ( mulGrp ` K ) |`s U ) ) e. ran J ) | 
						
							| 76 | 71 | frnd |  |-  ( ph -> ran J C_ ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 77 |  | eqid |  |-  ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) = ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) | 
						
							| 78 | 77 58 59 | ress0g |  |-  ( ( ( ( mulGrp ` K ) |`s U ) e. Mnd /\ ( 0g ` ( ( mulGrp ` K ) |`s U ) ) e. ran J /\ ran J C_ ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) -> ( 0g ` ( ( mulGrp ` K ) |`s U ) ) = ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 79 | 42 75 76 78 | syl3anc |  |-  ( ph -> ( 0g ` ( ( mulGrp ` K ) |`s U ) ) = ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 80 | 79 | sneqd |  |-  ( ph -> { ( 0g ` ( ( mulGrp ` K ) |`s U ) ) } = { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) | 
						
							| 81 | 80 | imaeq2d |  |-  ( ph -> ( `' J " { ( 0g ` ( ( mulGrp ` K ) |`s U ) ) } ) = ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) | 
						
							| 82 | 38 81 | eqtr2d |  |-  ( ph -> ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) = ( ( RSpan ` ZZring ) ` { R } ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ph -> ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) = ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) | 
						
							| 84 | 83 | eceq2d |  |-  ( ph -> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) = [ d ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) | 
						
							| 85 | 84 | mpteq2dv |  |-  ( ph -> ( d e. ZZ |-> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) = ( d e. ZZ |-> [ d ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) | 
						
							| 86 |  | eqid |  |-  ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) = ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) | 
						
							| 87 |  | eqid |  |-  ( Z/nZ ` R ) = ( Z/nZ ` R ) | 
						
							| 88 | 37 86 87 13 | znzrh2 |  |-  ( R e. NN0 -> L = ( d e. ZZ |-> [ d ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) | 
						
							| 89 | 52 88 | syl |  |-  ( ph -> L = ( d e. ZZ |-> [ d ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) | 
						
							| 90 | 89 | eqcomd |  |-  ( ph -> ( d e. ZZ |-> [ d ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) = L ) | 
						
							| 91 | 85 90 | eqtrd |  |-  ( ph -> ( d e. ZZ |-> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) = L ) | 
						
							| 92 | 91 | coeq2d |  |-  ( ph -> ( X o. ( d e. ZZ |-> [ d ] ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) = ( X o. L ) ) | 
						
							| 93 | 36 92 | eqtrd |  |-  ( ph -> J = ( X o. L ) ) | 
						
							| 94 | 93 | coeq2d |  |-  ( ph -> ( `' X o. J ) = ( `' X o. ( X o. L ) ) ) | 
						
							| 95 |  | coass |  |-  ( ( `' X o. X ) o. L ) = ( `' X o. ( X o. L ) ) | 
						
							| 96 | 95 | eqcomi |  |-  ( `' X o. ( X o. L ) ) = ( ( `' X o. X ) o. L ) | 
						
							| 97 | 94 96 | eqtrdi |  |-  ( ph -> ( `' X o. J ) = ( ( `' X o. X ) o. L ) ) | 
						
							| 98 | 77 58 | ressbas2 |  |-  ( ran J C_ ( Base ` ( ( mulGrp ` K ) |`s U ) ) -> ran J = ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 99 | 76 98 | syl |  |-  ( ph -> ran J = ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 100 | 23 28 29 30 22 99 | ghmqusker |  |-  ( ph -> X e. ( ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) GrpIso ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 101 |  | eqid |  |-  ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) | 
						
							| 102 |  | eqid |  |-  ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) = ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) | 
						
							| 103 | 101 102 | gimf1o |  |-  ( X e. ( ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) GrpIso ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) -> X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 104 | 100 103 | syl |  |-  ( ph -> X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) | 
						
							| 105 |  | f1ococnv1 |  |-  ( X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) -> ( `' X o. X ) = ( _I |` ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) ) | 
						
							| 106 | 104 105 | syl |  |-  ( ph -> ( `' X o. X ) = ( _I |` ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) ) | 
						
							| 107 | 106 | coeq1d |  |-  ( ph -> ( ( `' X o. X ) o. L ) = ( ( _I |` ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) o. L ) ) | 
						
							| 108 | 87 | zncrng |  |-  ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 109 | 52 108 | syl |  |-  ( ph -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 110 |  | crngring |  |-  ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) | 
						
							| 111 | 13 | zrhrhm |  |-  ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) | 
						
							| 112 |  | eqid |  |-  ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) | 
						
							| 113 | 31 112 | rhmf |  |-  ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 114 | 109 110 111 113 | 4syl |  |-  ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 115 |  | eqid |  |-  ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) | 
						
							| 116 | 37 115 87 | znbas2 |  |-  ( R e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) = ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 117 | 52 116 | syl |  |-  ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) = ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 118 | 117 | feq3d |  |-  ( ph -> ( L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) <-> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) ) | 
						
							| 119 | 114 118 | mpbird |  |-  ( ph -> L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) ) | 
						
							| 120 | 82 | eqcomd |  |-  ( ph -> ( ( RSpan ` ZZring ) ` { R } ) = ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) | 
						
							| 121 | 120 | oveq2d |  |-  ( ph -> ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) = ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) | 
						
							| 122 | 121 | oveq2d |  |-  ( ph -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) = ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) | 
						
							| 123 | 122 | fveq2d |  |-  ( ph -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) | 
						
							| 124 | 123 | feq3d |  |-  ( ph -> ( L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { R } ) ) ) ) <-> L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) ) | 
						
							| 125 | 119 124 | mpbid |  |-  ( ph -> L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) | 
						
							| 126 |  | fcoi2 |  |-  ( L : ZZ --> ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -> ( ( _I |` ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) o. L ) = L ) | 
						
							| 127 | 125 126 | syl |  |-  ( ph -> ( ( _I |` ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) ) o. L ) = L ) | 
						
							| 128 | 107 127 | eqtrd |  |-  ( ph -> ( ( `' X o. X ) o. L ) = L ) | 
						
							| 129 | 97 128 | eqtr2d |  |-  ( ph -> L = ( `' X o. J ) ) | 
						
							| 130 | 129 | imaeq1d |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) = ( ( `' X o. J ) " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 131 |  | imaco |  |-  ( ( `' X o. J ) " ( E " ( NN0 X. NN0 ) ) ) = ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 132 | 131 | a1i |  |-  ( ph -> ( ( `' X o. J ) " ( E " ( NN0 X. NN0 ) ) ) = ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 133 | 130 132 | eqtrd |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) = ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 134 | 133 | fveq2d |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = ( # ` ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 135 |  | simplll |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> ph ) | 
						
							| 136 |  | simplr |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> u e. ZZ ) | 
						
							| 137 | 135 136 | jca |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> ( ph /\ u e. ZZ ) ) | 
						
							| 138 |  | simplr |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> z e. ( 0 ... ( R - 1 ) ) ) | 
						
							| 139 |  | simpr |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ v = z ) -> v = z ) | 
						
							| 140 | 139 | fveqeq2d |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ v = z ) -> ( ( J ` v ) = ( J ` u ) <-> ( J ` z ) = ( J ` u ) ) ) | 
						
							| 141 | 20 | a1i |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 142 |  | simpr |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ j = z ) -> j = z ) | 
						
							| 143 | 142 | oveq1d |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ j = z ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 144 |  | fzssz |  |-  ( 0 ... ( R - 1 ) ) C_ ZZ | 
						
							| 145 | 144 138 | sselid |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> z e. ZZ ) | 
						
							| 146 |  | ovexd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) | 
						
							| 147 | 141 143 145 146 | fvmptd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( J ` z ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 148 |  | simpr |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ j = u ) -> j = u ) | 
						
							| 149 | 148 | oveq1d |  |-  ( ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) /\ j = u ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( u ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 150 |  | simpr |  |-  ( ( ph /\ u e. ZZ ) -> u e. ZZ ) | 
						
							| 151 | 150 | ad3antrrr |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> u e. ZZ ) | 
						
							| 152 |  | ovexd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( u ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) | 
						
							| 153 | 141 149 151 152 | fvmptd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( J ` u ) = ( u ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 154 |  | simpr |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> u = ( ( y x. R ) + z ) ) | 
						
							| 155 | 154 | oveq1d |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( u ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( y x. R ) + z ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 156 | 41 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( mulGrp ` K ) |`s U ) e. Grp ) | 
						
							| 157 |  | simplr |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> y e. ZZ ) | 
						
							| 158 | 5 | adantr |  |-  ( ( ph /\ u e. ZZ ) -> R e. NN ) | 
						
							| 159 | 158 | ad2antrr |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> R e. NN ) | 
						
							| 160 | 159 | nnzd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> R e. ZZ ) | 
						
							| 161 | 157 160 | zmulcld |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( y x. R ) e. ZZ ) | 
						
							| 162 | 144 | sseli |  |-  ( z e. ( 0 ... ( R - 1 ) ) -> z e. ZZ ) | 
						
							| 163 | 162 | adantl |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> z e. ZZ ) | 
						
							| 164 | 57 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 165 | 161 163 164 | 3jca |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( y x. R ) e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 166 |  | eqid |  |-  ( +g ` ( ( mulGrp ` K ) |`s U ) ) = ( +g ` ( ( mulGrp ` K ) |`s U ) ) | 
						
							| 167 | 58 53 166 | mulgdir |  |-  ( ( ( ( mulGrp ` K ) |`s U ) e. Grp /\ ( ( y x. R ) e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) ) -> ( ( ( y x. R ) + z ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 168 | 156 165 167 | syl2anc |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( ( y x. R ) + z ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 169 | 157 160 164 | 3jca |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( y e. ZZ /\ R e. ZZ /\ M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 170 | 58 53 | mulgass |  |-  ( ( ( ( mulGrp ` K ) |`s U ) e. Grp /\ ( y e. ZZ /\ R e. ZZ /\ M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) ) -> ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 171 | 156 169 170 | syl2anc |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 172 | 56 | simp2d |  |-  ( ph -> ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ph /\ u e. ZZ ) -> ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 174 | 173 | adantr |  |-  ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) -> ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 176 | 175 | oveq2d |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) ) | 
						
							| 177 | 58 53 59 | mulgz |  |-  ( ( ( ( mulGrp ` K ) |`s U ) e. Grp /\ y e. ZZ ) -> ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 178 | 156 157 177 | syl2anc |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 179 | 176 178 | eqtrd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( y ( .g ` ( ( mulGrp ` K ) |`s U ) ) ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 180 | 171 179 | eqtrd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 181 | 180 | oveq1d |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 182 | 58 53 156 163 164 | mulgcld |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 183 | 58 166 59 156 182 | grplidd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( 0g ` ( ( mulGrp ` K ) |`s U ) ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 184 | 181 183 | eqtrd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( ( y x. R ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ( +g ` ( ( mulGrp ` K ) |`s U ) ) ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 185 | 168 184 | eqtrd |  |-  ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) -> ( ( ( y x. R ) + z ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 186 | 185 | adantr |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( ( ( y x. R ) + z ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 187 | 155 186 | eqtrd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( u ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 188 | 153 187 | eqtr2d |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( z ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( J ` u ) ) | 
						
							| 189 | 147 188 | eqtrd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> ( J ` z ) = ( J ` u ) ) | 
						
							| 190 | 138 140 189 | rspcedvd |  |-  ( ( ( ( ( ph /\ u e. ZZ ) /\ y e. ZZ ) /\ z e. ( 0 ... ( R - 1 ) ) ) /\ u = ( ( y x. R ) + z ) ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = ( J ` u ) ) | 
						
							| 191 | 150 158 | remexz |  |-  ( ( ph /\ u e. ZZ ) -> E. y e. ZZ E. z e. ( 0 ... ( R - 1 ) ) u = ( ( y x. R ) + z ) ) | 
						
							| 192 | 190 191 | r19.29vva |  |-  ( ( ph /\ u e. ZZ ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = ( J ` u ) ) | 
						
							| 193 | 137 192 | syl |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = ( J ` u ) ) | 
						
							| 194 |  | simpr |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> ( J ` u ) = w ) | 
						
							| 195 | 194 | eqcomd |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> w = ( J ` u ) ) | 
						
							| 196 | 195 | eqeq2d |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> ( ( J ` v ) = w <-> ( J ` v ) = ( J ` u ) ) ) | 
						
							| 197 | 196 | rexbidv |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> ( E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w <-> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = ( J ` u ) ) ) | 
						
							| 198 | 193 197 | mpbird |  |-  ( ( ( ( ph /\ w e. ( J " ZZ ) ) /\ u e. ZZ ) /\ ( J ` u ) = w ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) | 
						
							| 199 |  | ssidd |  |-  ( ph -> ZZ C_ ZZ ) | 
						
							| 200 |  | fvelimab |  |-  ( ( J Fn ZZ /\ ZZ C_ ZZ ) -> ( w e. ( J " ZZ ) <-> E. u e. ZZ ( J ` u ) = w ) ) | 
						
							| 201 | 72 199 200 | syl2anc |  |-  ( ph -> ( w e. ( J " ZZ ) <-> E. u e. ZZ ( J ` u ) = w ) ) | 
						
							| 202 | 201 | biimpd |  |-  ( ph -> ( w e. ( J " ZZ ) -> E. u e. ZZ ( J ` u ) = w ) ) | 
						
							| 203 | 202 | imp |  |-  ( ( ph /\ w e. ( J " ZZ ) ) -> E. u e. ZZ ( J ` u ) = w ) | 
						
							| 204 | 198 203 | r19.29a |  |-  ( ( ph /\ w e. ( J " ZZ ) ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) | 
						
							| 205 | 144 | a1i |  |-  ( ph -> ( 0 ... ( R - 1 ) ) C_ ZZ ) | 
						
							| 206 |  | fvelimab |  |-  ( ( J Fn ZZ /\ ( 0 ... ( R - 1 ) ) C_ ZZ ) -> ( w e. ( J " ( 0 ... ( R - 1 ) ) ) <-> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) ) | 
						
							| 207 | 72 205 206 | syl2anc |  |-  ( ph -> ( w e. ( J " ( 0 ... ( R - 1 ) ) ) <-> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) ) | 
						
							| 208 | 207 | adantr |  |-  ( ( ph /\ w e. ( J " ZZ ) ) -> ( w e. ( J " ( 0 ... ( R - 1 ) ) ) <-> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) ) | 
						
							| 209 | 204 208 | mpbird |  |-  ( ( ph /\ w e. ( J " ZZ ) ) -> w e. ( J " ( 0 ... ( R - 1 ) ) ) ) | 
						
							| 210 | 209 | ex |  |-  ( ph -> ( w e. ( J " ZZ ) -> w e. ( J " ( 0 ... ( R - 1 ) ) ) ) ) | 
						
							| 211 | 210 | ssrdv |  |-  ( ph -> ( J " ZZ ) C_ ( J " ( 0 ... ( R - 1 ) ) ) ) | 
						
							| 212 | 207 | biimpd |  |-  ( ph -> ( w e. ( J " ( 0 ... ( R - 1 ) ) ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) ) | 
						
							| 213 | 212 | imp |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> E. v e. ( 0 ... ( R - 1 ) ) ( J ` v ) = w ) | 
						
							| 214 | 144 | sseli |  |-  ( v e. ( 0 ... ( R - 1 ) ) -> v e. ZZ ) | 
						
							| 215 | 214 | adantr |  |-  ( ( v e. ( 0 ... ( R - 1 ) ) /\ ( J ` v ) = w ) -> v e. ZZ ) | 
						
							| 216 | 215 | adantl |  |-  ( ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) /\ ( v e. ( 0 ... ( R - 1 ) ) /\ ( J ` v ) = w ) ) -> v e. ZZ ) | 
						
							| 217 |  | simprr |  |-  ( ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) /\ ( v e. ( 0 ... ( R - 1 ) ) /\ ( J ` v ) = w ) ) -> ( J ` v ) = w ) | 
						
							| 218 | 213 216 217 | reximssdv |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> E. v e. ZZ ( J ` v ) = w ) | 
						
							| 219 | 72 | adantr |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> J Fn ZZ ) | 
						
							| 220 |  | ssidd |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> ZZ C_ ZZ ) | 
						
							| 221 |  | fvelimab |  |-  ( ( J Fn ZZ /\ ZZ C_ ZZ ) -> ( w e. ( J " ZZ ) <-> E. v e. ZZ ( J ` v ) = w ) ) | 
						
							| 222 | 219 220 221 | syl2anc |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> ( w e. ( J " ZZ ) <-> E. v e. ZZ ( J ` v ) = w ) ) | 
						
							| 223 | 218 222 | mpbird |  |-  ( ( ph /\ w e. ( J " ( 0 ... ( R - 1 ) ) ) ) -> w e. ( J " ZZ ) ) | 
						
							| 224 | 223 | ex |  |-  ( ph -> ( w e. ( J " ( 0 ... ( R - 1 ) ) ) -> w e. ( J " ZZ ) ) ) | 
						
							| 225 | 224 | ssrdv |  |-  ( ph -> ( J " ( 0 ... ( R - 1 ) ) ) C_ ( J " ZZ ) ) | 
						
							| 226 | 211 225 | eqssd |  |-  ( ph -> ( J " ZZ ) = ( J " ( 0 ... ( R - 1 ) ) ) ) | 
						
							| 227 | 72 | fnfund |  |-  ( ph -> Fun J ) | 
						
							| 228 |  | fzfid |  |-  ( ph -> ( 0 ... ( R - 1 ) ) e. Fin ) | 
						
							| 229 |  | imafi |  |-  ( ( Fun J /\ ( 0 ... ( R - 1 ) ) e. Fin ) -> ( J " ( 0 ... ( R - 1 ) ) ) e. Fin ) | 
						
							| 230 | 227 228 229 | syl2anc |  |-  ( ph -> ( J " ( 0 ... ( R - 1 ) ) ) e. Fin ) | 
						
							| 231 | 226 230 | eqeltrd |  |-  ( ph -> ( J " ZZ ) e. Fin ) | 
						
							| 232 | 6 4 7 12 | aks6d1c2p1 |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 233 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 234 | 233 | a1i |  |-  ( ph -> NN C_ ZZ ) | 
						
							| 235 | 232 234 | jca |  |-  ( ph -> ( E : ( NN0 X. NN0 ) --> NN /\ NN C_ ZZ ) ) | 
						
							| 236 |  | fss |  |-  ( ( E : ( NN0 X. NN0 ) --> NN /\ NN C_ ZZ ) -> E : ( NN0 X. NN0 ) --> ZZ ) | 
						
							| 237 | 235 236 | syl |  |-  ( ph -> E : ( NN0 X. NN0 ) --> ZZ ) | 
						
							| 238 | 237 | frnd |  |-  ( ph -> ran E C_ ZZ ) | 
						
							| 239 | 232 | ffnd |  |-  ( ph -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 240 |  | fnima |  |-  ( E Fn ( NN0 X. NN0 ) -> ( E " ( NN0 X. NN0 ) ) = ran E ) | 
						
							| 241 | 239 240 | syl |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) = ran E ) | 
						
							| 242 | 241 | sseq1d |  |-  ( ph -> ( ( E " ( NN0 X. NN0 ) ) C_ ZZ <-> ran E C_ ZZ ) ) | 
						
							| 243 | 238 242 | mpbird |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) | 
						
							| 244 |  | imass2 |  |-  ( ( E " ( NN0 X. NN0 ) ) C_ ZZ -> ( J " ( E " ( NN0 X. NN0 ) ) ) C_ ( J " ZZ ) ) | 
						
							| 245 | 243 244 | syl |  |-  ( ph -> ( J " ( E " ( NN0 X. NN0 ) ) ) C_ ( J " ZZ ) ) | 
						
							| 246 | 231 245 | ssfid |  |-  ( ph -> ( J " ( E " ( NN0 X. NN0 ) ) ) e. Fin ) | 
						
							| 247 |  | dff1o2 |  |-  ( X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) <-> ( X Fn ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) /\ Fun `' X /\ ran X = ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) ) | 
						
							| 248 | 247 | biimpi |  |-  ( X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) -> ( X Fn ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) /\ Fun `' X /\ ran X = ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) ) ) | 
						
							| 249 | 248 | simp2d |  |-  ( X : ( Base ` ( ZZring /s ( ZZring ~QG ( `' J " { ( 0g ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) } ) ) ) ) -1-1-onto-> ( Base ` ( ( ( mulGrp ` K ) |`s U ) |`s ran J ) ) -> Fun `' X ) | 
						
							| 250 | 104 249 | syl |  |-  ( ph -> Fun `' X ) | 
						
							| 251 |  | imadomfi |  |-  ( ( ( J " ( E " ( NN0 X. NN0 ) ) ) e. Fin /\ Fun `' X ) -> ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ~<_ ( J " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 252 | 246 250 251 | syl2anc |  |-  ( ph -> ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ~<_ ( J " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 253 |  | hashdomi |  |-  ( ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ~<_ ( J " ( E " ( NN0 X. NN0 ) ) ) -> ( # ` ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 254 | 252 253 | syl |  |-  ( ph -> ( # ` ( `' X " ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 255 | 134 254 | eqbrtrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 256 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 21 | aks6d1c6lem4 |  |-  ( ph -> ( ( D + A ) _C ( D - 1 ) ) <_ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) ) |