Metamath Proof Explorer


Theorem imadomfi

Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025)

Ref Expression
Assertion imadomfi
|- ( ( A e. Fin /\ Fun F ) -> ( F " A ) ~<_ A )

Proof

Step Hyp Ref Expression
1 df-ima
 |-  ( F " A ) = ran ( F |` A )
2 funfn
 |-  ( Fun F <-> F Fn dom F )
3 resfnfinfin
 |-  ( ( F Fn dom F /\ A e. Fin ) -> ( F |` A ) e. Fin )
4 2 3 sylanb
 |-  ( ( Fun F /\ A e. Fin ) -> ( F |` A ) e. Fin )
5 dmfi
 |-  ( ( F |` A ) e. Fin -> dom ( F |` A ) e. Fin )
6 4 5 syl
 |-  ( ( Fun F /\ A e. Fin ) -> dom ( F |` A ) e. Fin )
7 funres
 |-  ( Fun F -> Fun ( F |` A ) )
8 funforn
 |-  ( Fun ( F |` A ) <-> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) )
9 7 8 sylib
 |-  ( Fun F -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) )
10 9 adantr
 |-  ( ( Fun F /\ A e. Fin ) -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) )
11 fodomfi
 |-  ( ( dom ( F |` A ) e. Fin /\ ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) -> ran ( F |` A ) ~<_ dom ( F |` A ) )
12 6 10 11 syl2anc
 |-  ( ( Fun F /\ A e. Fin ) -> ran ( F |` A ) ~<_ dom ( F |` A ) )
13 1 12 eqbrtrid
 |-  ( ( Fun F /\ A e. Fin ) -> ( F " A ) ~<_ dom ( F |` A ) )
14 resdmss
 |-  dom ( F |` A ) C_ A
15 ssdomfi
 |-  ( A e. Fin -> ( dom ( F |` A ) C_ A -> dom ( F |` A ) ~<_ A ) )
16 14 15 mpi
 |-  ( A e. Fin -> dom ( F |` A ) ~<_ A )
17 domtr
 |-  ( ( ( F " A ) ~<_ dom ( F |` A ) /\ dom ( F |` A ) ~<_ A ) -> ( F " A ) ~<_ A )
18 16 17 sylan2
 |-  ( ( ( F " A ) ~<_ dom ( F |` A ) /\ A e. Fin ) -> ( F " A ) ~<_ A )
19 13 18 sylancom
 |-  ( ( Fun F /\ A e. Fin ) -> ( F " A ) ~<_ A )
20 19 ancoms
 |-  ( ( A e. Fin /\ Fun F ) -> ( F " A ) ~<_ A )