Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
2 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
3 |
|
resfnfinfin |
|- ( ( F Fn dom F /\ A e. Fin ) -> ( F |` A ) e. Fin ) |
4 |
2 3
|
sylanb |
|- ( ( Fun F /\ A e. Fin ) -> ( F |` A ) e. Fin ) |
5 |
|
dmfi |
|- ( ( F |` A ) e. Fin -> dom ( F |` A ) e. Fin ) |
6 |
4 5
|
syl |
|- ( ( Fun F /\ A e. Fin ) -> dom ( F |` A ) e. Fin ) |
7 |
|
funres |
|- ( Fun F -> Fun ( F |` A ) ) |
8 |
|
funforn |
|- ( Fun ( F |` A ) <-> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
9 |
7 8
|
sylib |
|- ( Fun F -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
10 |
9
|
adantr |
|- ( ( Fun F /\ A e. Fin ) -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
11 |
|
fodomfi |
|- ( ( dom ( F |` A ) e. Fin /\ ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) |
12 |
6 10 11
|
syl2anc |
|- ( ( Fun F /\ A e. Fin ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) |
13 |
1 12
|
eqbrtrid |
|- ( ( Fun F /\ A e. Fin ) -> ( F " A ) ~<_ dom ( F |` A ) ) |
14 |
|
resdmss |
|- dom ( F |` A ) C_ A |
15 |
|
ssdomfi |
|- ( A e. Fin -> ( dom ( F |` A ) C_ A -> dom ( F |` A ) ~<_ A ) ) |
16 |
14 15
|
mpi |
|- ( A e. Fin -> dom ( F |` A ) ~<_ A ) |
17 |
|
domtr |
|- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ dom ( F |` A ) ~<_ A ) -> ( F " A ) ~<_ A ) |
18 |
16 17
|
sylan2 |
|- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ A e. Fin ) -> ( F " A ) ~<_ A ) |
19 |
13 18
|
sylancom |
|- ( ( Fun F /\ A e. Fin ) -> ( F " A ) ~<_ A ) |
20 |
19
|
ancoms |
|- ( ( A e. Fin /\ Fun F ) -> ( F " A ) ~<_ A ) |