| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
| 2 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 3 |
|
resfnfinfin |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 4 |
2 3
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 5 |
|
dmfi |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ Fin → dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 6 |
4 5
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 7 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) |
| 8 |
|
funforn |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 11 |
|
fodomfi |
⊢ ( ( dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
| 12 |
6 10 11
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
| 13 |
1 12
|
eqbrtrid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
| 14 |
|
resdmss |
⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
| 15 |
|
ssdomfi |
⊢ ( 𝐴 ∈ Fin → ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) ) |
| 16 |
14 15
|
mpi |
⊢ ( 𝐴 ∈ Fin → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) |
| 17 |
|
domtr |
⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 18 |
16 17
|
sylan2 |
⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 19 |
13 18
|
sylancom |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 20 |
19
|
ancoms |
⊢ ( ( 𝐴 ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |