Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
2 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
3 |
|
resfnfinfin |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
4 |
2 3
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
5 |
|
dmfi |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ Fin → dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
6 |
4 5
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
7 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) |
8 |
|
funforn |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
9 |
7 8
|
sylib |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
10 |
9
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
11 |
|
fodomfi |
⊢ ( ( dom ( 𝐹 ↾ 𝐴 ) ∈ Fin ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
12 |
6 10 11
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
13 |
1 12
|
eqbrtrid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
14 |
|
resdmss |
⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
15 |
|
ssdomfi |
⊢ ( 𝐴 ∈ Fin → ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) ) |
16 |
14 15
|
mpi |
⊢ ( 𝐴 ∈ Fin → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) |
17 |
|
domtr |
⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
18 |
16 17
|
sylan2 |
⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
19 |
13 18
|
sylancom |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ Fin ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
20 |
19
|
ancoms |
⊢ ( ( 𝐴 ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |