Metamath Proof Explorer


Theorem imadomfi

Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025)

Ref Expression
Assertion imadomfi ( ( 𝐴 ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹𝐴 ) ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 df-ima ( 𝐹𝐴 ) = ran ( 𝐹𝐴 )
2 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
3 resfnfinfin ( ( 𝐹 Fn dom 𝐹𝐴 ∈ Fin ) → ( 𝐹𝐴 ) ∈ Fin )
4 2 3 sylanb ( ( Fun 𝐹𝐴 ∈ Fin ) → ( 𝐹𝐴 ) ∈ Fin )
5 dmfi ( ( 𝐹𝐴 ) ∈ Fin → dom ( 𝐹𝐴 ) ∈ Fin )
6 4 5 syl ( ( Fun 𝐹𝐴 ∈ Fin ) → dom ( 𝐹𝐴 ) ∈ Fin )
7 funres ( Fun 𝐹 → Fun ( 𝐹𝐴 ) )
8 funforn ( Fun ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : dom ( 𝐹𝐴 ) –onto→ ran ( 𝐹𝐴 ) )
9 7 8 sylib ( Fun 𝐹 → ( 𝐹𝐴 ) : dom ( 𝐹𝐴 ) –onto→ ran ( 𝐹𝐴 ) )
10 9 adantr ( ( Fun 𝐹𝐴 ∈ Fin ) → ( 𝐹𝐴 ) : dom ( 𝐹𝐴 ) –onto→ ran ( 𝐹𝐴 ) )
11 fodomfi ( ( dom ( 𝐹𝐴 ) ∈ Fin ∧ ( 𝐹𝐴 ) : dom ( 𝐹𝐴 ) –onto→ ran ( 𝐹𝐴 ) ) → ran ( 𝐹𝐴 ) ≼ dom ( 𝐹𝐴 ) )
12 6 10 11 syl2anc ( ( Fun 𝐹𝐴 ∈ Fin ) → ran ( 𝐹𝐴 ) ≼ dom ( 𝐹𝐴 ) )
13 1 12 eqbrtrid ( ( Fun 𝐹𝐴 ∈ Fin ) → ( 𝐹𝐴 ) ≼ dom ( 𝐹𝐴 ) )
14 resdmss dom ( 𝐹𝐴 ) ⊆ 𝐴
15 ssdomfi ( 𝐴 ∈ Fin → ( dom ( 𝐹𝐴 ) ⊆ 𝐴 → dom ( 𝐹𝐴 ) ≼ 𝐴 ) )
16 14 15 mpi ( 𝐴 ∈ Fin → dom ( 𝐹𝐴 ) ≼ 𝐴 )
17 domtr ( ( ( 𝐹𝐴 ) ≼ dom ( 𝐹𝐴 ) ∧ dom ( 𝐹𝐴 ) ≼ 𝐴 ) → ( 𝐹𝐴 ) ≼ 𝐴 )
18 16 17 sylan2 ( ( ( 𝐹𝐴 ) ≼ dom ( 𝐹𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐹𝐴 ) ≼ 𝐴 )
19 13 18 sylancom ( ( Fun 𝐹𝐴 ∈ Fin ) → ( 𝐹𝐴 ) ≼ 𝐴 )
20 19 ancoms ( ( 𝐴 ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹𝐴 ) ≼ 𝐴 )