Metamath Proof Explorer


Theorem resdmss

Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion resdmss dom ( 𝐴𝐵 ) ⊆ 𝐵

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )
2 inss1 ( 𝐵 ∩ dom 𝐴 ) ⊆ 𝐵
3 1 2 eqsstri dom ( 𝐴𝐵 ) ⊆ 𝐵