Metamath Proof Explorer


Theorem imadomfi

Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025)

Ref Expression
Assertion imadomfi A Fin Fun F F A A

Proof

Step Hyp Ref Expression
1 df-ima F A = ran F A
2 funfn Fun F F Fn dom F
3 resfnfinfin F Fn dom F A Fin F A Fin
4 2 3 sylanb Fun F A Fin F A Fin
5 dmfi F A Fin dom F A Fin
6 4 5 syl Fun F A Fin dom F A Fin
7 funres Fun F Fun F A
8 funforn Fun F A F A : dom F A onto ran F A
9 7 8 sylib Fun F F A : dom F A onto ran F A
10 9 adantr Fun F A Fin F A : dom F A onto ran F A
11 fodomfi dom F A Fin F A : dom F A onto ran F A ran F A dom F A
12 6 10 11 syl2anc Fun F A Fin ran F A dom F A
13 1 12 eqbrtrid Fun F A Fin F A dom F A
14 resdmss dom F A A
15 ssdomfi A Fin dom F A A dom F A A
16 14 15 mpi A Fin dom F A A
17 domtr F A dom F A dom F A A F A A
18 16 17 sylan2 F A dom F A A Fin F A A
19 13 18 sylancom Fun F A Fin F A A
20 19 ancoms A Fin Fun F F A A