| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcled.1 |  |-  ( ph -> A e. NN0 ) | 
						
							| 2 |  | bcled.2 |  |-  ( ph -> B e. NN0 ) | 
						
							| 3 |  | bcled.3 |  |-  ( ph -> C e. ZZ ) | 
						
							| 4 |  | bcled.4 |  |-  ( ph -> A <_ B ) | 
						
							| 5 |  | bcval2 |  |-  ( C e. ( 0 ... A ) -> ( A _C C ) = ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A _C C ) = ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. NN0 ) | 
						
							| 8 | 7 | faccld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` A ) e. NN ) | 
						
							| 9 | 8 | nncnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` A ) e. CC ) | 
						
							| 10 | 7 | nn0zd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. ZZ ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. ZZ ) | 
						
							| 12 | 10 11 | zsubcld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A - C ) e. ZZ ) | 
						
							| 13 | 11 | zred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. RR ) | 
						
							| 14 | 7 | nn0red |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. RR ) | 
						
							| 15 |  | 0red |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 e. RR ) | 
						
							| 16 |  | elfzle2 |  |-  ( C e. ( 0 ... A ) -> C <_ A ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ A ) | 
						
							| 18 | 14 | recnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. CC ) | 
						
							| 19 | 18 | subid1d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A - 0 ) = A ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A = ( A - 0 ) ) | 
						
							| 21 | 17 20 | breqtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ ( A - 0 ) ) | 
						
							| 22 | 13 14 15 21 | lesubd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 <_ ( A - C ) ) | 
						
							| 23 | 12 22 | jca |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( A - C ) e. ZZ /\ 0 <_ ( A - C ) ) ) | 
						
							| 24 |  | elnn0z |  |-  ( ( A - C ) e. NN0 <-> ( ( A - C ) e. ZZ /\ 0 <_ ( A - C ) ) ) | 
						
							| 25 | 23 24 | sylibr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A - C ) e. NN0 ) | 
						
							| 26 | 25 | faccld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( A - C ) ) e. NN ) | 
						
							| 27 | 26 | nncnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( A - C ) ) e. CC ) | 
						
							| 28 |  | elfznn0 |  |-  ( C e. ( 0 ... A ) -> C e. NN0 ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. NN0 ) | 
						
							| 30 | 29 | faccld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` C ) e. NN ) | 
						
							| 31 | 30 | nncnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` C ) e. CC ) | 
						
							| 32 | 26 | nnne0d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( A - C ) ) =/= 0 ) | 
						
							| 33 | 30 | nnne0d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` C ) =/= 0 ) | 
						
							| 34 | 9 27 31 32 33 | divdiv1d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ( ! ` A ) / ( ! ` ( A - C ) ) ) / ( ! ` C ) ) = ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 35 | 34 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) = ( ( ( ! ` A ) / ( ! ` ( A - C ) ) ) / ( ! ` C ) ) ) | 
						
							| 36 | 8 | nnred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` A ) e. RR ) | 
						
							| 37 | 26 | nnred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( A - C ) ) e. RR ) | 
						
							| 38 | 36 37 32 | redivcld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` A ) / ( ! ` ( A - C ) ) ) e. RR ) | 
						
							| 39 | 2 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. NN0 ) | 
						
							| 40 | 39 | faccld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` B ) e. NN ) | 
						
							| 41 | 40 | nnred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` B ) e. RR ) | 
						
							| 42 | 39 | nn0zd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. ZZ ) | 
						
							| 43 | 42 11 | zsubcld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B - C ) e. ZZ ) | 
						
							| 44 | 39 | nn0red |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. RR ) | 
						
							| 45 | 4 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A <_ B ) | 
						
							| 46 | 13 14 44 17 45 | letrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ B ) | 
						
							| 47 | 44 | recnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. CC ) | 
						
							| 48 | 47 | subid1d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B - 0 ) = B ) | 
						
							| 49 | 48 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B = ( B - 0 ) ) | 
						
							| 50 | 46 49 | breqtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ ( B - 0 ) ) | 
						
							| 51 | 13 44 15 50 | lesubd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 <_ ( B - C ) ) | 
						
							| 52 | 43 51 | jca |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( B - C ) e. ZZ /\ 0 <_ ( B - C ) ) ) | 
						
							| 53 |  | elnn0z |  |-  ( ( B - C ) e. NN0 <-> ( ( B - C ) e. ZZ /\ 0 <_ ( B - C ) ) ) | 
						
							| 54 | 52 53 | sylibr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B - C ) e. NN0 ) | 
						
							| 55 | 54 | faccld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( B - C ) ) e. NN ) | 
						
							| 56 | 55 | nnred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( B - C ) ) e. RR ) | 
						
							| 57 | 55 | nnne0d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( B - C ) ) =/= 0 ) | 
						
							| 58 | 41 56 57 | redivcld |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` B ) / ( ! ` ( B - C ) ) ) e. RR ) | 
						
							| 59 | 30 | nnrpd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` C ) e. RR+ ) | 
						
							| 60 |  | nfv |  |-  F/ k ( ph /\ C e. ( 0 ... A ) ) | 
						
							| 61 |  | fzfid |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( 0 ... ( C - 1 ) ) e. Fin ) | 
						
							| 62 | 14 | adantr |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> A e. RR ) | 
						
							| 63 |  | elfzelz |  |-  ( k e. ( 0 ... ( C - 1 ) ) -> k e. ZZ ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> k e. ZZ ) | 
						
							| 65 | 64 | zred |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> k e. RR ) | 
						
							| 66 | 62 65 | resubcld |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( A - k ) e. RR ) | 
						
							| 67 |  | 0red |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> 0 e. RR ) | 
						
							| 68 | 29 | nn0red |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. RR ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> C e. RR ) | 
						
							| 70 |  | 1red |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> 1 e. RR ) | 
						
							| 71 | 69 70 | resubcld |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( C - 1 ) e. RR ) | 
						
							| 72 | 62 67 | resubcld |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( A - 0 ) e. RR ) | 
						
							| 73 |  | elfzle2 |  |-  ( k e. ( 0 ... ( C - 1 ) ) -> k <_ ( C - 1 ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> k <_ ( C - 1 ) ) | 
						
							| 75 | 17 | adantr |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> C <_ A ) | 
						
							| 76 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 77 | 76 | a1i |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> 0 <_ 1 ) | 
						
							| 78 | 69 67 62 70 75 77 | le2subd |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( C - 1 ) <_ ( A - 0 ) ) | 
						
							| 79 | 65 71 72 74 78 | letrd |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> k <_ ( A - 0 ) ) | 
						
							| 80 | 65 62 67 79 | lesubd |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> 0 <_ ( A - k ) ) | 
						
							| 81 | 44 | adantr |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> B e. RR ) | 
						
							| 82 | 81 65 | resubcld |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( B - k ) e. RR ) | 
						
							| 83 | 4 | ad2antrr |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> A <_ B ) | 
						
							| 84 | 62 81 65 83 | lesub1dd |  |-  ( ( ( ph /\ C e. ( 0 ... A ) ) /\ k e. ( 0 ... ( C - 1 ) ) ) -> ( A - k ) <_ ( B - k ) ) | 
						
							| 85 | 60 61 66 80 82 84 | fprodle |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> prod_ k e. ( 0 ... ( C - 1 ) ) ( A - k ) <_ prod_ k e. ( 0 ... ( C - 1 ) ) ( B - k ) ) | 
						
							| 86 | 7 | nn0cnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. CC ) | 
						
							| 87 |  | fallfacval |  |-  ( ( A e. CC /\ C e. NN0 ) -> ( A FallFac C ) = prod_ k e. ( 0 ... ( C - 1 ) ) ( A - k ) ) | 
						
							| 88 | 86 29 87 | syl2anc |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A FallFac C ) = prod_ k e. ( 0 ... ( C - 1 ) ) ( A - k ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> prod_ k e. ( 0 ... ( C - 1 ) ) ( A - k ) = ( A FallFac C ) ) | 
						
							| 90 | 39 | nn0cnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. CC ) | 
						
							| 91 |  | fallfacval |  |-  ( ( B e. CC /\ C e. NN0 ) -> ( B FallFac C ) = prod_ k e. ( 0 ... ( C - 1 ) ) ( B - k ) ) | 
						
							| 92 | 90 29 91 | syl2anc |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B FallFac C ) = prod_ k e. ( 0 ... ( C - 1 ) ) ( B - k ) ) | 
						
							| 93 | 92 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> prod_ k e. ( 0 ... ( C - 1 ) ) ( B - k ) = ( B FallFac C ) ) | 
						
							| 94 | 85 89 93 | 3brtr3d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A FallFac C ) <_ ( B FallFac C ) ) | 
						
							| 95 |  | fallfacval4 |  |-  ( C e. ( 0 ... A ) -> ( A FallFac C ) = ( ( ! ` A ) / ( ! ` ( A - C ) ) ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A FallFac C ) = ( ( ! ` A ) / ( ! ` ( A - C ) ) ) ) | 
						
							| 97 |  | 0zd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 e. ZZ ) | 
						
							| 98 | 29 | nn0ge0d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 <_ C ) | 
						
							| 99 | 68 14 44 17 45 | letrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ B ) | 
						
							| 100 | 97 42 11 98 99 | elfzd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. ( 0 ... B ) ) | 
						
							| 101 |  | fallfacval4 |  |-  ( C e. ( 0 ... B ) -> ( B FallFac C ) = ( ( ! ` B ) / ( ! ` ( B - C ) ) ) ) | 
						
							| 102 | 100 101 | syl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B FallFac C ) = ( ( ! ` B ) / ( ! ` ( B - C ) ) ) ) | 
						
							| 103 | 94 96 102 | 3brtr3d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` A ) / ( ! ` ( A - C ) ) ) <_ ( ( ! ` B ) / ( ! ` ( B - C ) ) ) ) | 
						
							| 104 | 38 58 59 103 | lediv1dd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ( ! ` A ) / ( ! ` ( A - C ) ) ) / ( ! ` C ) ) <_ ( ( ( ! ` B ) / ( ! ` ( B - C ) ) ) / ( ! ` C ) ) ) | 
						
							| 105 | 40 | nncnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` B ) e. CC ) | 
						
							| 106 | 55 | nncnd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ! ` ( B - C ) ) e. CC ) | 
						
							| 107 | 105 106 31 57 33 | divdiv1d |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ( ! ` B ) / ( ! ` ( B - C ) ) ) / ( ! ` C ) ) = ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 108 | 104 107 | breqtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ( ! ` A ) / ( ! ` ( A - C ) ) ) / ( ! ` C ) ) <_ ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 109 | 35 108 | eqbrtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) <_ ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 110 | 2 | nn0zd |  |-  ( ph -> B e. ZZ ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. ZZ ) | 
						
							| 112 |  | elfzle1 |  |-  ( C e. ( 0 ... A ) -> 0 <_ C ) | 
						
							| 113 | 112 | adantl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> 0 <_ C ) | 
						
							| 114 | 1 | nn0red |  |-  ( ph -> A e. RR ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> A e. RR ) | 
						
							| 116 | 111 | zred |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> B e. RR ) | 
						
							| 117 | 13 115 116 17 45 | letrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C <_ B ) | 
						
							| 118 | 97 111 11 113 117 | elfzd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> C e. ( 0 ... B ) ) | 
						
							| 119 |  | bcval2 |  |-  ( C e. ( 0 ... B ) -> ( B _C C ) = ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( B _C C ) = ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) ) | 
						
							| 121 | 120 | eqcomd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` B ) / ( ( ! ` ( B - C ) ) x. ( ! ` C ) ) ) = ( B _C C ) ) | 
						
							| 122 | 109 121 | breqtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( ( ! ` A ) / ( ( ! ` ( A - C ) ) x. ( ! ` C ) ) ) <_ ( B _C C ) ) | 
						
							| 123 | 6 122 | eqbrtrd |  |-  ( ( ph /\ C e. ( 0 ... A ) ) -> ( A _C C ) <_ ( B _C C ) ) | 
						
							| 124 | 1 | adantr |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> A e. NN0 ) | 
						
							| 125 | 3 | adantr |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> C e. ZZ ) | 
						
							| 126 |  | simpr |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> -. C e. ( 0 ... A ) ) | 
						
							| 127 |  | bcval3 |  |-  ( ( A e. NN0 /\ C e. ZZ /\ -. C e. ( 0 ... A ) ) -> ( A _C C ) = 0 ) | 
						
							| 128 | 124 125 126 127 | syl3anc |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> ( A _C C ) = 0 ) | 
						
							| 129 |  | bccl2 |  |-  ( C e. ( 0 ... B ) -> ( B _C C ) e. NN ) | 
						
							| 130 | 129 | adantl |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ C e. ( 0 ... B ) ) -> ( B _C C ) e. NN ) | 
						
							| 131 | 130 | nnnn0d |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ C e. ( 0 ... B ) ) -> ( B _C C ) e. NN0 ) | 
						
							| 132 | 131 | nn0ge0d |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ C e. ( 0 ... B ) ) -> 0 <_ ( B _C C ) ) | 
						
							| 133 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 134 | 133 | a1i |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> 0 <_ 0 ) | 
						
							| 135 | 2 | ad2antrr |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> B e. NN0 ) | 
						
							| 136 | 125 | adantr |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> C e. ZZ ) | 
						
							| 137 |  | simpr |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> -. C e. ( 0 ... B ) ) | 
						
							| 138 |  | bcval3 |  |-  ( ( B e. NN0 /\ C e. ZZ /\ -. C e. ( 0 ... B ) ) -> ( B _C C ) = 0 ) | 
						
							| 139 | 135 136 137 138 | syl3anc |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> ( B _C C ) = 0 ) | 
						
							| 140 | 139 | eqcomd |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> 0 = ( B _C C ) ) | 
						
							| 141 | 134 140 | breqtrd |  |-  ( ( ( ph /\ -. C e. ( 0 ... A ) ) /\ -. C e. ( 0 ... B ) ) -> 0 <_ ( B _C C ) ) | 
						
							| 142 | 132 141 | pm2.61dan |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> 0 <_ ( B _C C ) ) | 
						
							| 143 | 128 142 | eqbrtrd |  |-  ( ( ph /\ -. C e. ( 0 ... A ) ) -> ( A _C C ) <_ ( B _C C ) ) | 
						
							| 144 | 123 143 | pm2.61dan |  |-  ( ph -> ( A _C C ) <_ ( B _C C ) ) |