Step |
Hyp |
Ref |
Expression |
1 |
|
bcled.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
2 |
|
bcled.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
3 |
|
bcled.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
4 |
|
bcled.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
bcval2 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → ( 𝐴 C 𝐶 ) = ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 C 𝐶 ) = ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
8 |
7
|
faccld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ ) |
9 |
8
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℂ ) |
10 |
7
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℤ ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ℤ ) |
12 |
10 11
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 − 𝐶 ) ∈ ℤ ) |
13 |
11
|
zred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ℝ ) |
14 |
7
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℝ ) |
15 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ∈ ℝ ) |
16 |
|
elfzle2 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → 𝐶 ≤ 𝐴 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ 𝐴 ) |
18 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℂ ) |
19 |
18
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 − 0 ) = 𝐴 ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 = ( 𝐴 − 0 ) ) |
21 |
17 20
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ ( 𝐴 − 0 ) ) |
22 |
13 14 15 21
|
lesubd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ≤ ( 𝐴 − 𝐶 ) ) |
23 |
12 22
|
jca |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝐴 − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 − 𝐶 ) ) ) |
24 |
|
elnn0z |
⊢ ( ( 𝐴 − 𝐶 ) ∈ ℕ0 ↔ ( ( 𝐴 − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 − 𝐶 ) ) ) |
25 |
23 24
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 − 𝐶 ) ∈ ℕ0 ) |
26 |
25
|
faccld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐴 − 𝐶 ) ) ∈ ℕ ) |
27 |
26
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐴 − 𝐶 ) ) ∈ ℂ ) |
28 |
|
elfznn0 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → 𝐶 ∈ ℕ0 ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ℕ0 ) |
30 |
29
|
faccld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐶 ) ∈ ℕ ) |
31 |
30
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐶 ) ∈ ℂ ) |
32 |
26
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐴 − 𝐶 ) ) ≠ 0 ) |
33 |
30
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐶 ) ≠ 0 ) |
34 |
9 27 31 32 33
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) = ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) = ( ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) ) |
36 |
8
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℝ ) |
37 |
26
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) |
38 |
36 37 32
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) ∈ ℝ ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℕ0 ) |
40 |
39
|
faccld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℕ ) |
41 |
40
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℝ ) |
42 |
39
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℤ ) |
43 |
42 11
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 − 𝐶 ) ∈ ℤ ) |
44 |
39
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℝ ) |
45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ≤ 𝐵 ) |
46 |
13 14 44 17 45
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ 𝐵 ) |
47 |
44
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℂ ) |
48 |
47
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 − 0 ) = 𝐵 ) |
49 |
48
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 = ( 𝐵 − 0 ) ) |
50 |
46 49
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ ( 𝐵 − 0 ) ) |
51 |
13 44 15 50
|
lesubd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ≤ ( 𝐵 − 𝐶 ) ) |
52 |
43 51
|
jca |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝐵 − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( 𝐵 − 𝐶 ) ) ) |
53 |
|
elnn0z |
⊢ ( ( 𝐵 − 𝐶 ) ∈ ℕ0 ↔ ( ( 𝐵 − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( 𝐵 − 𝐶 ) ) ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 − 𝐶 ) ∈ ℕ0 ) |
55 |
54
|
faccld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐵 − 𝐶 ) ) ∈ ℕ ) |
56 |
55
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
57 |
55
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐵 − 𝐶 ) ) ≠ 0 ) |
58 |
41 56 57
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) ∈ ℝ ) |
59 |
30
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐶 ) ∈ ℝ+ ) |
60 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) |
61 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 0 ... ( 𝐶 − 1 ) ) ∈ Fin ) |
62 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝐴 ∈ ℝ ) |
63 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) → 𝑘 ∈ ℤ ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝑘 ∈ ℤ ) |
65 |
64
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝑘 ∈ ℝ ) |
66 |
62 65
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐴 − 𝑘 ) ∈ ℝ ) |
67 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 0 ∈ ℝ ) |
68 |
29
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ℝ ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝐶 ∈ ℝ ) |
70 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 1 ∈ ℝ ) |
71 |
69 70
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐶 − 1 ) ∈ ℝ ) |
72 |
62 67
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐴 − 0 ) ∈ ℝ ) |
73 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) → 𝑘 ≤ ( 𝐶 − 1 ) ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝑘 ≤ ( 𝐶 − 1 ) ) |
75 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝐶 ≤ 𝐴 ) |
76 |
|
0le1 |
⊢ 0 ≤ 1 |
77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 0 ≤ 1 ) |
78 |
69 67 62 70 75 77
|
le2subd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐶 − 1 ) ≤ ( 𝐴 − 0 ) ) |
79 |
65 71 72 74 78
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝑘 ≤ ( 𝐴 − 0 ) ) |
80 |
65 62 67 79
|
lesubd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 0 ≤ ( 𝐴 − 𝑘 ) ) |
81 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝐵 ∈ ℝ ) |
82 |
81 65
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐵 − 𝑘 ) ∈ ℝ ) |
83 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → 𝐴 ≤ 𝐵 ) |
84 |
62 81 65 83
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ) → ( 𝐴 − 𝑘 ) ≤ ( 𝐵 − 𝑘 ) ) |
85 |
60 61 66 80 82 84
|
fprodle |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐴 − 𝑘 ) ≤ ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐵 − 𝑘 ) ) |
86 |
7
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℂ ) |
87 |
|
fallfacval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 FallFac 𝐶 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐴 − 𝑘 ) ) |
88 |
86 29 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 FallFac 𝐶 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐴 − 𝑘 ) ) |
89 |
88
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐴 − 𝑘 ) = ( 𝐴 FallFac 𝐶 ) ) |
90 |
39
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℂ ) |
91 |
|
fallfacval |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 FallFac 𝐶 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐵 − 𝑘 ) ) |
92 |
90 29 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 FallFac 𝐶 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐵 − 𝑘 ) ) |
93 |
92
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ∏ 𝑘 ∈ ( 0 ... ( 𝐶 − 1 ) ) ( 𝐵 − 𝑘 ) = ( 𝐵 FallFac 𝐶 ) ) |
94 |
85 89 93
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 FallFac 𝐶 ) ≤ ( 𝐵 FallFac 𝐶 ) ) |
95 |
|
fallfacval4 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → ( 𝐴 FallFac 𝐶 ) = ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 FallFac 𝐶 ) = ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) ) |
97 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ∈ ℤ ) |
98 |
29
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ≤ 𝐶 ) |
99 |
68 14 44 17 45
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ 𝐵 ) |
100 |
97 42 11 98 99
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ( 0 ... 𝐵 ) ) |
101 |
|
fallfacval4 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐵 ) → ( 𝐵 FallFac 𝐶 ) = ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) ) |
102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 FallFac 𝐶 ) = ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) ) |
103 |
94 96 102
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) ≤ ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) ) |
104 |
38 58 59 103
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) ≤ ( ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) ) |
105 |
40
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℂ ) |
106 |
55
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ! ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
107 |
105 106 31 57 33
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ( ! ‘ 𝐵 ) / ( ! ‘ ( 𝐵 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) = ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
108 |
104 107
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ( ! ‘ 𝐴 ) / ( ! ‘ ( 𝐴 − 𝐶 ) ) ) / ( ! ‘ 𝐶 ) ) ≤ ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
109 |
35 108
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ≤ ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
110 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℤ ) |
112 |
|
elfzle1 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → 0 ≤ 𝐶 ) |
113 |
112
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ≤ 𝐶 ) |
114 |
1
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℝ ) |
116 |
111
|
zred |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐵 ∈ ℝ ) |
117 |
13 115 116 17 45
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ≤ 𝐵 ) |
118 |
97 111 11 113 117
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ( 0 ... 𝐵 ) ) |
119 |
|
bcval2 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐵 ) → ( 𝐵 C 𝐶 ) = ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐵 C 𝐶 ) = ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ) |
121 |
120
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐵 ) / ( ( ! ‘ ( 𝐵 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) = ( 𝐵 C 𝐶 ) ) |
122 |
109 121
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) / ( ( ! ‘ ( 𝐴 − 𝐶 ) ) · ( ! ‘ 𝐶 ) ) ) ≤ ( 𝐵 C 𝐶 ) ) |
123 |
6 122
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 C 𝐶 ) ≤ ( 𝐵 C 𝐶 ) ) |
124 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
125 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 𝐶 ∈ ℤ ) |
126 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) |
127 |
|
bcval3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 C 𝐶 ) = 0 ) |
128 |
124 125 126 127
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 C 𝐶 ) = 0 ) |
129 |
|
bccl2 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐵 ) → ( 𝐵 C 𝐶 ) ∈ ℕ ) |
130 |
129
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝐶 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 C 𝐶 ) ∈ ℕ ) |
131 |
130
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝐶 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 C 𝐶 ) ∈ ℕ0 ) |
132 |
131
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝐵 C 𝐶 ) ) |
133 |
|
0le0 |
⊢ 0 ≤ 0 |
134 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ 0 ) |
135 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℕ0 ) |
136 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 𝐶 ∈ ℤ ) |
137 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) |
138 |
|
bcval3 |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 C 𝐶 ) = 0 ) |
139 |
135 136 137 138
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 C 𝐶 ) = 0 ) |
140 |
139
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 0 = ( 𝐵 C 𝐶 ) ) |
141 |
134 140
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) ∧ ¬ 𝐶 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝐵 C 𝐶 ) ) |
142 |
132 141
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → 0 ≤ ( 𝐵 C 𝐶 ) ) |
143 |
128 142
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ( 0 ... 𝐴 ) ) → ( 𝐴 C 𝐶 ) ≤ ( 𝐵 C 𝐶 ) ) |
144 |
123 143
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 C 𝐶 ) ≤ ( 𝐵 C 𝐶 ) ) |