| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcled.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 2 |  | bcled.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℕ0 ) | 
						
							| 3 |  | bcled.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 4 |  | bcled.4 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 5 |  | bcval2 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  ( 𝐴 C 𝐶 )  =  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴 C 𝐶 )  =  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 8 | 7 | faccld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 9 | 8 | nncnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 7 | nn0zd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 12 | 10 11 | zsubcld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  𝐶 )  ∈  ℤ ) | 
						
							| 13 | 11 | zred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 14 | 7 | nn0red | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 15 |  | 0red | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 16 |  | elfzle2 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  𝐶  ≤  𝐴 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  𝐴 ) | 
						
							| 18 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 19 | 18 | subid1d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  =  ( 𝐴  −  0 ) ) | 
						
							| 21 | 17 20 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  ( 𝐴  −  0 ) ) | 
						
							| 22 | 13 14 15 21 | lesubd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  ( 𝐴  −  𝐶 ) ) | 
						
							| 23 | 12 22 | jca | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝐴  −  𝐶 )  ∈  ℤ  ∧  0  ≤  ( 𝐴  −  𝐶 ) ) ) | 
						
							| 24 |  | elnn0z | ⊢ ( ( 𝐴  −  𝐶 )  ∈  ℕ0  ↔  ( ( 𝐴  −  𝐶 )  ∈  ℤ  ∧  0  ≤  ( 𝐴  −  𝐶 ) ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  𝐶 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | faccld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐴  −  𝐶 ) )  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐴  −  𝐶 ) )  ∈  ℂ ) | 
						
							| 28 |  | elfznn0 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  𝐶  ∈  ℕ0 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℕ0 ) | 
						
							| 30 | 29 | faccld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐶 )  ∈  ℕ ) | 
						
							| 31 | 30 | nncnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 32 | 26 | nnne0d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐴  −  𝐶 ) )  ≠  0 ) | 
						
							| 33 | 30 | nnne0d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐶 )  ≠  0 ) | 
						
							| 34 | 9 27 31 32 33 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) )  =  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) )  =  ( ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) ) ) | 
						
							| 36 | 8 | nnred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 37 | 26 | nnred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐴  −  𝐶 ) )  ∈  ℝ ) | 
						
							| 38 | 36 37 32 | redivcld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 39 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 40 | 39 | faccld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 41 | 40 | nnred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 42 | 39 | nn0zd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 43 | 42 11 | zsubcld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  𝐶 )  ∈  ℤ ) | 
						
							| 44 | 39 | nn0red | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 46 | 13 14 44 17 45 | letrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  𝐵 ) | 
						
							| 47 | 44 | recnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 48 | 47 | subid1d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  0 )  =  𝐵 ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  =  ( 𝐵  −  0 ) ) | 
						
							| 50 | 46 49 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  ( 𝐵  −  0 ) ) | 
						
							| 51 | 13 44 15 50 | lesubd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  ( 𝐵  −  𝐶 ) ) | 
						
							| 52 | 43 51 | jca | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝐵  −  𝐶 )  ∈  ℤ  ∧  0  ≤  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 53 |  | elnn0z | ⊢ ( ( 𝐵  −  𝐶 )  ∈  ℕ0  ↔  ( ( 𝐵  −  𝐶 )  ∈  ℤ  ∧  0  ≤  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 54 | 52 53 | sylibr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  𝐶 )  ∈  ℕ0 ) | 
						
							| 55 | 54 | faccld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐵  −  𝐶 ) )  ∈  ℕ ) | 
						
							| 56 | 55 | nnred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐵  −  𝐶 ) )  ∈  ℝ ) | 
						
							| 57 | 55 | nnne0d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐵  −  𝐶 ) )  ≠  0 ) | 
						
							| 58 | 41 56 57 | redivcld | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 59 | 30 | nnrpd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐶 )  ∈  ℝ+ ) | 
						
							| 60 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 61 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 0 ... ( 𝐶  −  1 ) )  ∈  Fin ) | 
						
							| 62 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 63 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 65 | 64 | zred | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 66 | 62 65 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐴  −  𝑘 )  ∈  ℝ ) | 
						
							| 67 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 68 | 29 | nn0red | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 70 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 71 | 69 70 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐶  −  1 )  ∈  ℝ ) | 
						
							| 72 | 62 67 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐴  −  0 )  ∈  ℝ ) | 
						
							| 73 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) )  →  𝑘  ≤  ( 𝐶  −  1 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝑘  ≤  ( 𝐶  −  1 ) ) | 
						
							| 75 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝐶  ≤  𝐴 ) | 
						
							| 76 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 77 | 76 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  0  ≤  1 ) | 
						
							| 78 | 69 67 62 70 75 77 | le2subd | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐶  −  1 )  ≤  ( 𝐴  −  0 ) ) | 
						
							| 79 | 65 71 72 74 78 | letrd | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝑘  ≤  ( 𝐴  −  0 ) ) | 
						
							| 80 | 65 62 67 79 | lesubd | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  0  ≤  ( 𝐴  −  𝑘 ) ) | 
						
							| 81 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 82 | 81 65 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐵  −  𝑘 )  ∈  ℝ ) | 
						
							| 83 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 84 | 62 81 65 83 | lesub1dd | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) )  →  ( 𝐴  −  𝑘 )  ≤  ( 𝐵  −  𝑘 ) ) | 
						
							| 85 | 60 61 66 80 82 84 | fprodle | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐴  −  𝑘 )  ≤  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐵  −  𝑘 ) ) | 
						
							| 86 | 7 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 87 |  | fallfacval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴  FallFac  𝐶 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐴  −  𝑘 ) ) | 
						
							| 88 | 86 29 87 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  FallFac  𝐶 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐴  −  𝑘 ) ) | 
						
							| 89 | 88 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐴  −  𝑘 )  =  ( 𝐴  FallFac  𝐶 ) ) | 
						
							| 90 | 39 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 91 |  | fallfacval | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐵  FallFac  𝐶 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐵  −  𝑘 ) ) | 
						
							| 92 | 90 29 91 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  FallFac  𝐶 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐵  −  𝑘 ) ) | 
						
							| 93 | 92 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ∏ 𝑘  ∈  ( 0 ... ( 𝐶  −  1 ) ) ( 𝐵  −  𝑘 )  =  ( 𝐵  FallFac  𝐶 ) ) | 
						
							| 94 | 85 89 93 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  FallFac  𝐶 )  ≤  ( 𝐵  FallFac  𝐶 ) ) | 
						
							| 95 |  | fallfacval4 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  ( 𝐴  FallFac  𝐶 )  =  ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) ) ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  FallFac  𝐶 )  =  ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) ) ) | 
						
							| 97 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ∈  ℤ ) | 
						
							| 98 | 29 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  𝐶 ) | 
						
							| 99 | 68 14 44 17 45 | letrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  𝐵 ) | 
						
							| 100 | 97 42 11 98 99 | elfzd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 101 |  | fallfacval4 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐵 )  →  ( 𝐵  FallFac  𝐶 )  =  ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) ) ) | 
						
							| 102 | 100 101 | syl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  FallFac  𝐶 )  =  ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) ) ) | 
						
							| 103 | 94 96 102 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  ≤  ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) ) ) | 
						
							| 104 | 38 58 59 103 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) )  ≤  ( ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) ) ) | 
						
							| 105 | 40 | nncnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 106 | 55 | nncnd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ! ‘ ( 𝐵  −  𝐶 ) )  ∈  ℂ ) | 
						
							| 107 | 105 106 31 57 33 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( ! ‘ 𝐵 )  /  ( ! ‘ ( 𝐵  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) )  =  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 108 | 104 107 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( ! ‘ 𝐴 )  /  ( ! ‘ ( 𝐴  −  𝐶 ) ) )  /  ( ! ‘ 𝐶 ) )  ≤  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 109 | 35 108 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) )  ≤  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 110 | 2 | nn0zd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 112 |  | elfzle1 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  0  ≤  𝐶 ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  𝐶 ) | 
						
							| 114 | 1 | nn0red | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 116 | 111 | zred | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 117 | 13 115 116 17 45 | letrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ≤  𝐵 ) | 
						
							| 118 | 97 111 11 113 117 | elfzd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 119 |  | bcval2 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐵 )  →  ( 𝐵 C 𝐶 )  =  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵 C 𝐶 )  =  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) ) ) | 
						
							| 121 | 120 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐵 )  /  ( ( ! ‘ ( 𝐵  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) )  =  ( 𝐵 C 𝐶 ) ) | 
						
							| 122 | 109 121 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  /  ( ( ! ‘ ( 𝐴  −  𝐶 ) )  ·  ( ! ‘ 𝐶 ) ) )  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 123 | 6 122 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴 C 𝐶 )  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 124 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 125 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 126 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ¬  𝐶  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 127 |  | bcval3 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐶  ∈  ℤ  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴 C 𝐶 )  =  0 ) | 
						
							| 128 | 124 125 126 127 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴 C 𝐶 )  =  0 ) | 
						
							| 129 |  | bccl2 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐵 )  →  ( 𝐵 C 𝐶 )  ∈  ℕ ) | 
						
							| 130 | 129 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐶  ∈  ( 0 ... 𝐵 ) )  →  ( 𝐵 C 𝐶 )  ∈  ℕ ) | 
						
							| 131 | 130 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐶  ∈  ( 0 ... 𝐵 ) )  →  ( 𝐵 C 𝐶 )  ∈  ℕ0 ) | 
						
							| 132 | 131 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐶  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 133 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 134 | 133 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  0 ) | 
						
							| 135 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 136 | 125 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 137 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  ¬  𝐶  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 138 |  | bcval3 | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℤ  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  ( 𝐵 C 𝐶 )  =  0 ) | 
						
							| 139 | 135 136 137 138 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  ( 𝐵 C 𝐶 )  =  0 ) | 
						
							| 140 | 139 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  0  =  ( 𝐵 C 𝐶 ) ) | 
						
							| 141 | 134 140 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ¬  𝐶  ∈  ( 0 ... 𝐵 ) )  →  0  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 142 | 132 141 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 143 | 128 142 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴 C 𝐶 )  ≤  ( 𝐵 C 𝐶 ) ) | 
						
							| 144 | 123 143 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐴 C 𝐶 )  ≤  ( 𝐵 C 𝐶 ) ) |