Metamath Proof Explorer
Description: Division of both sides of a less than or equal to relation by a
positive number. (Contributed by Mario Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltmul1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltmul1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
ltmul1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
|
|
lediv1dd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
lediv1dd |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltmul1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltmul1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltmul1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
lediv1dd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
1 2 3
|
lediv1d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) |