Metamath Proof Explorer
Description: Division of both sides of a less than or equal to relation by a
positive number. (Contributed by Mario Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltmul1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltmul1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
ltmul1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
|
|
lediv1dd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
lediv1dd |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltmul1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltmul1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ltmul1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 4 |
|
lediv1dd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
1 2 3
|
lediv1d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) ) |
| 6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) |