Metamath Proof Explorer


Theorem lediv1dd

Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
lediv1dd.4 ( 𝜑𝐴𝐵 )
Assertion lediv1dd ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
2 ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
3 ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
4 lediv1dd.4 ( 𝜑𝐴𝐵 )
5 1 2 3 lediv1d ( 𝜑 → ( 𝐴𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) )