| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltmul1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltmul1d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ltmul1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 4 |  | lediv12ad.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 5 |  | lediv12ad.5 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 6 |  | lediv12ad.6 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 7 |  | lediv12ad.7 | ⊢ ( 𝜑  →  𝐶  ≤  𝐷 ) | 
						
							| 8 | 1 2 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 9 | 5 6 | jca | ⊢ ( 𝜑  →  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) | 
						
							| 10 | 3 | rpred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 11 | 10 4 | jca | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ ) ) | 
						
							| 12 | 3 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐶 ) | 
						
							| 13 | 12 7 | jca | ⊢ ( 𝜑  →  ( 0  <  𝐶  ∧  𝐶  ≤  𝐷 ) ) | 
						
							| 14 |  | lediv12a | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  ∧  ( 0  <  𝐶  ∧  𝐶  ≤  𝐷 ) ) )  →  ( 𝐴  /  𝐷 )  ≤  ( 𝐵  /  𝐶 ) ) | 
						
							| 15 | 8 9 11 13 14 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴  /  𝐷 )  ≤  ( 𝐵  /  𝐶 ) ) |