| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mul2lt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
mul2lt0.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mul2lt0.3 |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) |
| 4 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 6 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 ∈ ℝ ) |
| 7 |
|
negelrp |
⊢ ( 𝐵 ∈ ℝ → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) |
| 9 |
8
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℝ+ ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 11 |
5 6 9 10
|
ltdiv1dd |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / - 𝐵 ) < ( 0 / - 𝐵 ) ) |
| 12 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ ℂ ) |
| 14 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 ∈ ℂ ) |
| 16 |
13 15
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 < 0 ) |
| 18 |
17
|
lt0ne0d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 ≠ 0 ) |
| 19 |
16 15 18
|
divneg2d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( ( 𝐴 · 𝐵 ) / - 𝐵 ) ) |
| 20 |
13 15 18
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 21 |
20
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - ( ( 𝐴 · 𝐵 ) / 𝐵 ) = - 𝐴 ) |
| 22 |
19 21
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / - 𝐵 ) = - 𝐴 ) |
| 23 |
15
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℂ ) |
| 24 |
15 18
|
negne0d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ≠ 0 ) |
| 25 |
23 24
|
div0d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 0 / - 𝐵 ) = 0 ) |
| 26 |
11 22 25
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐴 < 0 ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ ℝ ) |
| 28 |
27
|
lt0neg2d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
| 29 |
26 28
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |