Metamath Proof Explorer


Theorem lediv1d

Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
Assertion lediv1d ( 𝜑 → ( 𝐴𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
2 ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
3 ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
4 3 rpregt0d ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
5 lediv1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) )
6 1 2 4 5 syl3anc ( 𝜑 → ( 𝐴𝐵 ↔ ( 𝐴 / 𝐶 ) ≤ ( 𝐵 / 𝐶 ) ) )