Metamath Proof Explorer


Theorem lediv1dd

Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltmul1d.1 φA
ltmul1d.2 φB
ltmul1d.3 φC+
lediv1dd.4 φAB
Assertion lediv1dd φACBC

Proof

Step Hyp Ref Expression
1 ltmul1d.1 φA
2 ltmul1d.2 φB
3 ltmul1d.3 φC+
4 lediv1dd.4 φAB
5 1 2 3 lediv1d φABACBC
6 4 5 mpbid φACBC