| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcle2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 2 |  | bcle2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℕ0 ) | 
						
							| 3 |  | bcle2d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℕ0 ) | 
						
							| 4 |  | bcle2d.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 5 |  | bcle2d.5 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 6 |  | bcle2d.6 | ⊢ ( 𝜑  →  𝐷  ≤  𝐶 ) | 
						
							| 7 |  | bcval2 | ⊢ ( ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) ) | 
						
							| 9 | 1 3 | nn0addcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐶 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐶 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐶 ) )  ∈  ℕ ) | 
						
							| 12 | 11 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐶 ) )  ∈  ℂ ) | 
						
							| 13 | 1 | nn0zd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 14 | 13 4 | zaddcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ℤ ) | 
						
							| 15 |  | elfzle1 | ⊢ ( ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) )  →  0  ≤  ( 𝐴  +  𝐷 ) ) | 
						
							| 16 | 14 15 | anim12i | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 17 |  | elnn0z | ⊢ ( ( 𝐴  +  𝐷 )  ∈  ℕ0  ↔  ( ( 𝐴  +  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ∈  ℕ ) | 
						
							| 20 | 19 | nnnn0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ∈  ℂ ) | 
						
							| 22 | 1 | nn0red | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 24 | 23 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 3 | nn0cnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℂ ) | 
						
							| 27 | 4 | zred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐷  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐷  ∈  ℂ ) | 
						
							| 30 | 24 26 24 29 | addsub4d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 31 | 24 | subidd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐷 ) )  =  ( 0  +  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 33 | 26 29 | subcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ℂ ) | 
						
							| 34 | 33 | addlidd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 0  +  ( 𝐶  −  𝐷 ) )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 35 | 32 34 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐷 ) )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 36 | 30 35 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 37 | 3 | nn0zd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℤ ) | 
						
							| 39 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐷  ∈  ℤ ) | 
						
							| 40 | 38 39 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ℤ ) | 
						
							| 41 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐷  ≤  𝐶 ) | 
						
							| 42 | 38 | zred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 43 | 42 28 | subge0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 0  ≤  ( 𝐶  −  𝐷 )  ↔  𝐷  ≤  𝐶 ) ) | 
						
							| 44 | 41 43 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ≤  ( 𝐶  −  𝐷 ) ) | 
						
							| 45 | 40 44 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐶  −  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 46 |  | elnn0z | ⊢ ( ( 𝐶  −  𝐷 )  ∈  ℕ0  ↔  ( ( 𝐶  −  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ℕ0 ) | 
						
							| 48 | 36 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 49 | 48 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ∈  ℕ ) | 
						
							| 50 | 49 | nnnn0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ∈  ℕ0 ) | 
						
							| 51 | 50 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ∈  ℂ ) | 
						
							| 52 | 19 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ≠  0 ) | 
						
							| 53 | 49 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ≠  0 ) | 
						
							| 54 | 12 21 51 52 53 | divdiv1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐴  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) ) ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐴  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) )  =  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) ) | 
						
							| 56 |  | 0zd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ∈  ℤ ) | 
						
							| 57 | 10 | nn0zd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐶 )  ∈  ℤ ) | 
						
							| 58 | 28 | renegcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  - 𝐷  ∈  ℝ ) | 
						
							| 59 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℕ0 ) | 
						
							| 60 | 59 | nn0red | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 61 |  | df-neg | ⊢ - 𝐷  =  ( 0  −  𝐷 ) | 
						
							| 62 | 61 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  - 𝐷  =  ( 0  −  𝐷 ) ) | 
						
							| 63 | 15 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ≤  ( 𝐴  +  𝐷 ) ) | 
						
							| 64 |  | 0red | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ∈  ℝ ) | 
						
							| 65 | 64 28 23 | lesubaddd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 0  −  𝐷 )  ≤  𝐴  ↔  0  ≤  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 66 | 63 65 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 0  −  𝐷 )  ≤  𝐴 ) | 
						
							| 67 | 62 66 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  - 𝐷  ≤  𝐴 ) | 
						
							| 68 | 58 23 60 67 | leadd2dd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  +  - 𝐷 )  ≤  ( 𝐶  +  𝐴 ) ) | 
						
							| 69 | 26 29 | negsubd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  +  - 𝐷 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 70 | 26 24 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  +  𝐴 )  =  ( 𝐴  +  𝐶 ) ) | 
						
							| 71 | 68 69 70 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 72 | 56 57 40 44 71 | elfzd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) ) | 
						
							| 73 |  | fallfacval4 | ⊢ ( ( 𝐶  −  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) ) ) | 
						
							| 75 | 9 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐶 )  ∈  ℂ ) | 
						
							| 76 | 27 | recnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 77 | 75 25 76 | subsubd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) )  =  ( ( ( 𝐴  +  𝐶 )  −  𝐶 )  +  𝐷 ) ) | 
						
							| 78 | 22 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 79 | 78 25 | pncand | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐶 )  −  𝐶 )  =  𝐴 ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐶 )  −  𝐶 )  +  𝐷 )  =  ( 𝐴  +  𝐷 ) ) | 
						
							| 81 | 77 80 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) )  =  ( 𝐴  +  𝐷 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) )  =  ( 𝐴  +  𝐷 ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) )  =  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) | 
						
							| 85 | 74 84 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) | 
						
							| 86 | 85 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  =  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 87 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) ) | 
						
							| 88 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) )  ∈  Fin ) | 
						
							| 89 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 90 | 3 | nn0red | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 93 | 89 92 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 𝐴  +  𝐶 )  ∈  ℝ ) | 
						
							| 94 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 95 | 94 | zred | ⊢ ( 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 97 | 93 96 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  𝑘 )  ∈  ℝ ) | 
						
							| 98 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 99 | 98 96 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 0  +  𝑘 )  ∈  ℝ ) | 
						
							| 100 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝐷  ∈  ℝ ) | 
						
							| 101 | 92 100 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ℝ ) | 
						
							| 102 |  | 1red | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 103 | 101 102 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐶  −  𝐷 )  −  1 )  ∈  ℝ ) | 
						
							| 104 | 96 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 105 | 104 | addlidd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 0  +  𝑘 )  =  𝑘 ) | 
						
							| 106 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) )  →  𝑘  ≤  ( ( 𝐶  −  𝐷 )  −  1 ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝑘  ≤  ( ( 𝐶  −  𝐷 )  −  1 ) ) | 
						
							| 108 | 105 107 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 0  +  𝑘 )  ≤  ( ( 𝐶  −  𝐷 )  −  1 ) ) | 
						
							| 109 | 101 | lem1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐶  −  𝐷 )  −  1 )  ≤  ( 𝐶  −  𝐷 ) ) | 
						
							| 110 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 𝐶  −  𝐷 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 111 | 103 101 93 109 110 | letrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐶  −  𝐷 )  −  1 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 112 | 99 103 93 108 111 | letrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 0  +  𝑘 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 113 | 64 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 114 |  | leaddsub | ⊢ ( ( 0  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  ( 𝐴  +  𝐶 )  ∈  ℝ )  →  ( ( 0  +  𝑘 )  ≤  ( 𝐴  +  𝐶 )  ↔  0  ≤  ( ( 𝐴  +  𝐶 )  −  𝑘 ) ) ) | 
						
							| 115 | 113 96 93 114 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 0  +  𝑘 )  ≤  ( 𝐴  +  𝐶 )  ↔  0  ≤  ( ( 𝐴  +  𝐶 )  −  𝑘 ) ) ) | 
						
							| 116 | 112 115 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  0  ≤  ( ( 𝐴  +  𝐶 )  −  𝑘 ) ) | 
						
							| 117 | 2 | nn0red | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 120 | 119 92 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℝ ) | 
						
							| 121 | 120 96 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  𝑘 )  ∈  ℝ ) | 
						
							| 122 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 124 | 89 119 92 123 | leadd1dd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( 𝐴  +  𝐶 )  ≤  ( 𝐵  +  𝐶 ) ) | 
						
							| 125 | 93 120 96 124 | lesub1dd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) )  →  ( ( 𝐴  +  𝐶 )  −  𝑘 )  ≤  ( ( 𝐵  +  𝐶 )  −  𝑘 ) ) | 
						
							| 126 | 87 88 97 116 121 125 | fprodle | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐴  +  𝐶 )  −  𝑘 )  ≤  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐵  +  𝐶 )  −  𝑘 ) ) | 
						
							| 127 | 75 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐶 )  ∈  ℂ ) | 
						
							| 128 |  | fallfacval | ⊢ ( ( ( 𝐴  +  𝐶 )  ∈  ℂ  ∧  ( 𝐶  −  𝐷 )  ∈  ℕ0 )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐴  +  𝐶 )  −  𝑘 ) ) | 
						
							| 129 | 127 47 128 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐴  +  𝐶 )  −  𝑘 ) ) | 
						
							| 130 | 129 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐴  +  𝐶 )  −  𝑘 )  =  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 131 | 118 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 132 | 131 26 | addcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℂ ) | 
						
							| 133 |  | fallfacval | ⊢ ( ( ( 𝐵  +  𝐶 )  ∈  ℂ  ∧  ( 𝐶  −  𝐷 )  ∈  ℕ0 )  →  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐵  +  𝐶 )  −  𝑘 ) ) | 
						
							| 134 | 132 47 133 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐵  +  𝐶 )  −  𝑘 ) ) | 
						
							| 135 | 134 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ∏ 𝑘  ∈  ( 0 ... ( ( 𝐶  −  𝐷 )  −  1 ) ) ( ( 𝐵  +  𝐶 )  −  𝑘 )  =  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 136 | 126 130 135 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  ≤  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 137 | 2 | nn0zd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 138 | 137 37 | zaddcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝐶 )  ∈  ℤ ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℤ ) | 
						
							| 140 | 23 28 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  ∈  ℝ ) | 
						
							| 141 | 137 4 | zaddcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝐷 )  ∈  ℤ ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ℤ ) | 
						
							| 143 | 142 | zred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ℝ ) | 
						
							| 144 | 23 118 28 122 | leadd1dd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  ≤  ( 𝐵  +  𝐷 ) ) | 
						
							| 145 | 64 140 143 63 144 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ≤  ( 𝐵  +  𝐷 ) ) | 
						
							| 146 | 64 28 118 | lesubaddd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 0  −  𝐷 )  ≤  𝐵  ↔  0  ≤  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 147 | 145 146 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 0  −  𝐷 )  ≤  𝐵 ) | 
						
							| 148 | 62 147 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  - 𝐷  ≤  𝐵 ) | 
						
							| 149 | 58 118 60 148 | leadd2dd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  +  - 𝐷 )  ≤  ( 𝐶  +  𝐵 ) ) | 
						
							| 150 | 26 131 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  +  𝐵 )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 151 | 149 69 150 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ≤  ( 𝐵  +  𝐶 ) ) | 
						
							| 152 | 56 139 40 44 151 | elfzd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) ) | 
						
							| 153 |  | fallfacval4 | ⊢ ( ( 𝐶  −  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) )  →  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) ) ) | 
						
							| 154 | 152 153 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) ) ) | 
						
							| 155 | 132 26 29 | subsubd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) )  =  ( ( ( 𝐵  +  𝐶 )  −  𝐶 )  +  𝐷 ) ) | 
						
							| 156 | 131 26 | pncand | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  𝐶 )  =  𝐵 ) | 
						
							| 157 | 156 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐵  +  𝐶 )  −  𝐶 )  +  𝐷 )  =  ( 𝐵  +  𝐷 ) ) | 
						
							| 158 | 155 157 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) )  =  ( 𝐵  +  𝐷 ) ) | 
						
							| 159 | 158 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) )  =  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) | 
						
							| 160 | 159 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐶  −  𝐷 ) ) ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 161 | 154 160 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 162 | 136 161 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 )  FallFac  ( 𝐶  −  𝐷 ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 163 | 86 162 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 164 | 11 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐶 ) )  ∈  ℝ ) | 
						
							| 165 | 19 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ∈  ℝ ) | 
						
							| 166 | 164 165 52 | redivcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  ∈  ℝ ) | 
						
							| 167 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 168 | 167 59 | nn0addcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℕ0 ) | 
						
							| 169 | 168 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐶 ) )  ∈  ℕ ) | 
						
							| 170 | 169 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐶 ) )  ∈  ℝ ) | 
						
							| 171 | 142 145 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 172 |  | elnn0z | ⊢ ( ( 𝐵  +  𝐷 )  ∈  ℕ0  ↔  ( ( 𝐵  +  𝐷 )  ∈  ℤ  ∧  0  ≤  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 173 | 171 172 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ℕ0 ) | 
						
							| 174 | 173 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐷 ) )  ∈  ℕ ) | 
						
							| 175 | 174 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐷 ) )  ∈  ℝ ) | 
						
							| 176 | 174 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐷 ) )  ≠  0 ) | 
						
							| 177 | 170 175 176 | redivcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  ∈  ℝ ) | 
						
							| 178 | 35 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 179 | 30 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐷 ) )  =  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 180 | 178 179 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  =  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 181 | 180 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐶  −  𝐷 ) )  =  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) | 
						
							| 182 | 181 49 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐶  −  𝐷 ) )  ∈  ℕ ) | 
						
							| 183 | 182 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐶  −  𝐷 ) )  ∈  ℝ+ ) | 
						
							| 184 | 166 177 183 | lediv1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  ↔  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) )  ≤  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) ) ) ) | 
						
							| 185 | 163 184 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) )  ≤  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) ) ) | 
						
							| 186 | 181 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) )  =  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) ) | 
						
							| 187 | 131 26 | pncan2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  𝐵 )  =  𝐶 ) | 
						
							| 188 | 187 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  𝐶  =  ( ( 𝐵  +  𝐶 )  −  𝐵 ) ) | 
						
							| 189 | 188 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  =  ( ( ( 𝐵  +  𝐶 )  −  𝐵 )  −  𝐷 ) ) | 
						
							| 190 | 132 131 29 | subsub4d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐵  +  𝐶 )  −  𝐵 )  −  𝐷 )  =  ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 191 | 189 190 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐶  −  𝐷 )  =  ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐶  −  𝐷 ) )  =  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 193 | 192 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( 𝐶  −  𝐷 ) ) )  =  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 194 | 185 186 193 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) )  ≤  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 195 | 169 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐶 ) )  ∈  ℂ ) | 
						
							| 196 | 174 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐵  +  𝐷 ) )  ∈  ℂ ) | 
						
							| 197 | 131 26 29 | pnpcand | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 198 | 197 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 199 | 198 | faccld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ∈  ℕ ) | 
						
							| 200 | 199 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ∈  ℂ ) | 
						
							| 201 | 199 | nnne0d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ≠  0 ) | 
						
							| 202 | 195 196 200 176 201 | divdiv1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ! ‘ ( 𝐵  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐵  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) ) ) | 
						
							| 203 | 194 202 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ! ‘ ( 𝐴  +  𝐷 ) ) )  /  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐵  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) ) ) | 
						
							| 204 | 55 203 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐴  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐵  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) ) ) | 
						
							| 205 | 19 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( 𝐴  +  𝐷 ) )  ∈  ℂ ) | 
						
							| 206 | 49 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ∈  ℂ ) | 
						
							| 207 | 205 206 | mulcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) )  =  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) | 
						
							| 208 | 207 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐴  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) ) ) )  =  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) ) ) | 
						
							| 209 | 196 200 | mulcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐵  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) )  =  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 210 | 209 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( 𝐵  +  𝐷 ) )  ·  ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) ) ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 211 | 204 208 210 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) )  ≤  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 212 |  | elfzle2 | ⊢ ( ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) )  →  ( 𝐴  +  𝐷 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 213 | 212 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  ≤  ( 𝐴  +  𝐶 ) ) | 
						
							| 214 | 131 29 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  =  ( 𝐷  +  𝐵 ) ) | 
						
							| 215 | 214 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐷  +  𝐵 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 216 | 29 131 | addcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐷  +  𝐵 )  ∈  ℂ ) | 
						
							| 217 | 23 118 | resubcld | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  −  𝐵 )  ∈  ℝ ) | 
						
							| 218 | 217 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 219 | 216 218 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐷  +  𝐵 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 220 | 215 219 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 221 | 218 29 131 | addassd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐷 )  +  𝐵 )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 222 | 221 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐵 )  +  ( 𝐷  +  𝐵 ) )  =  ( ( ( 𝐴  −  𝐵 )  +  𝐷 )  +  𝐵 ) ) | 
						
							| 223 | 220 222 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐴  −  𝐵 )  +  𝐷 )  +  𝐵 ) ) | 
						
							| 224 | 24 131 29 | nppcand | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐷 )  +  𝐵 )  =  ( 𝐴  +  𝐷 ) ) | 
						
							| 225 | 223 224 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  =  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 226 | 132 218 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 227 | 131 26 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 228 | 227 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐵 )  +  ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐶  +  𝐵 ) ) ) | 
						
							| 229 | 226 228 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐶  +  𝐵 ) ) ) | 
						
							| 230 | 218 26 131 | addassd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  +  𝐵 )  =  ( ( 𝐴  −  𝐵 )  +  ( 𝐶  +  𝐵 ) ) ) | 
						
							| 231 | 230 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  −  𝐵 )  +  ( 𝐶  +  𝐵 ) )  =  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  +  𝐵 ) ) | 
						
							| 232 | 229 231 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  +  𝐵 ) ) | 
						
							| 233 | 24 131 26 | nppcand | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  +  𝐵 )  =  ( 𝐴  +  𝐶 ) ) | 
						
							| 234 | 232 233 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐶 )  =  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 235 | 213 225 234 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) )  ≤  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 236 | 139 | zred | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℝ ) | 
						
							| 237 | 143 236 217 | leadd1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐷 )  ≤  ( 𝐵  +  𝐶 )  ↔  ( ( 𝐵  +  𝐷 )  +  ( 𝐴  −  𝐵 ) )  ≤  ( ( 𝐵  +  𝐶 )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 238 | 235 237 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ≤  ( 𝐵  +  𝐶 ) ) | 
						
							| 239 | 56 139 142 145 238 | elfzd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) ) | 
						
							| 240 |  | bcval2 | ⊢ ( ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 241 | 239 240 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  =  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) ) ) | 
						
							| 242 | 241 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐵  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐵  +  𝐶 )  −  ( 𝐵  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐵  +  𝐷 ) ) ) )  =  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 243 | 211 242 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( ! ‘ ( 𝐴  +  𝐶 ) )  /  ( ( ! ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  +  𝐷 ) ) )  ·  ( ! ‘ ( 𝐴  +  𝐷 ) ) ) )  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 244 | 8 243 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 245 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐶 )  ∈  ℕ0 ) | 
						
							| 246 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐴  +  𝐷 )  ∈  ℤ ) | 
						
							| 247 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) ) | 
						
							| 248 |  | bcval3 | ⊢ ( ( ( 𝐴  +  𝐶 )  ∈  ℕ0  ∧  ( 𝐴  +  𝐷 )  ∈  ℤ  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  =  0 ) | 
						
							| 249 | 245 246 247 248 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  =  0 ) | 
						
							| 250 |  | bccl2 | ⊢ ( ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  ∈  ℕ ) | 
						
							| 251 | 250 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  ∈  ℕ ) | 
						
							| 252 | 251 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 253 | 252 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  0  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 254 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 255 | 254 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  0  ≤  0 ) | 
						
							| 256 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 257 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  𝐶  ∈  ℕ0 ) | 
						
							| 258 | 256 257 | nn0addcld | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( 𝐵  +  𝐶 )  ∈  ℕ0 ) | 
						
							| 259 | 141 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ℤ ) | 
						
							| 260 | 259 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( 𝐵  +  𝐷 )  ∈  ℤ ) | 
						
							| 261 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) ) | 
						
							| 262 |  | bcval3 | ⊢ ( ( ( 𝐵  +  𝐶 )  ∈  ℕ0  ∧  ( 𝐵  +  𝐷 )  ∈  ℤ  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  =  0 ) | 
						
							| 263 | 258 260 261 262 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) )  =  0 ) | 
						
							| 264 | 263 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  0  =  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 265 | 255 264 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  ∧  ¬  ( 𝐵  +  𝐷 )  ∈  ( 0 ... ( 𝐵  +  𝐶 ) ) )  →  0  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 266 | 253 265 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  0  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 267 | 249 266 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐴  +  𝐷 )  ∈  ( 0 ... ( 𝐴  +  𝐶 ) ) )  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) | 
						
							| 268 | 244 267 | pm2.61dan | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐶 ) C ( 𝐴  +  𝐷 ) )  ≤  ( ( 𝐵  +  𝐶 ) C ( 𝐵  +  𝐷 ) ) ) |