| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcle2d.1 |
|- ( ph -> A e. NN0 ) |
| 2 |
|
bcle2d.2 |
|- ( ph -> B e. NN0 ) |
| 3 |
|
bcle2d.3 |
|- ( ph -> C e. NN0 ) |
| 4 |
|
bcle2d.4 |
|- ( ph -> D e. ZZ ) |
| 5 |
|
bcle2d.5 |
|- ( ph -> A <_ B ) |
| 6 |
|
bcle2d.6 |
|- ( ph -> D <_ C ) |
| 7 |
|
bcval2 |
|- ( ( A + D ) e. ( 0 ... ( A + C ) ) -> ( ( A + C ) _C ( A + D ) ) = ( ( ! ` ( A + C ) ) / ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) _C ( A + D ) ) = ( ( ! ` ( A + C ) ) / ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) ) |
| 9 |
1 3
|
nn0addcld |
|- ( ph -> ( A + C ) e. NN0 ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + C ) e. NN0 ) |
| 11 |
10
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + C ) ) e. NN ) |
| 12 |
11
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + C ) ) e. CC ) |
| 13 |
1
|
nn0zd |
|- ( ph -> A e. ZZ ) |
| 14 |
13 4
|
zaddcld |
|- ( ph -> ( A + D ) e. ZZ ) |
| 15 |
|
elfzle1 |
|- ( ( A + D ) e. ( 0 ... ( A + C ) ) -> 0 <_ ( A + D ) ) |
| 16 |
14 15
|
anim12i |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + D ) e. ZZ /\ 0 <_ ( A + D ) ) ) |
| 17 |
|
elnn0z |
|- ( ( A + D ) e. NN0 <-> ( ( A + D ) e. ZZ /\ 0 <_ ( A + D ) ) ) |
| 18 |
16 17
|
sylibr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) e. NN0 ) |
| 19 |
18
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) e. NN ) |
| 20 |
19
|
nnnn0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) e. NN0 ) |
| 21 |
20
|
nn0cnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) e. CC ) |
| 22 |
1
|
nn0red |
|- ( ph -> A e. RR ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> A e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> A e. CC ) |
| 25 |
3
|
nn0cnd |
|- ( ph -> C e. CC ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. CC ) |
| 27 |
4
|
zred |
|- ( ph -> D e. RR ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> D e. RR ) |
| 29 |
28
|
recnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> D e. CC ) |
| 30 |
24 26 24 29
|
addsub4d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) - ( A + D ) ) = ( ( A - A ) + ( C - D ) ) ) |
| 31 |
24
|
subidd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A - A ) = 0 ) |
| 32 |
31
|
oveq1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - A ) + ( C - D ) ) = ( 0 + ( C - D ) ) ) |
| 33 |
26 29
|
subcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) e. CC ) |
| 34 |
33
|
addlidd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( 0 + ( C - D ) ) = ( C - D ) ) |
| 35 |
32 34
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - A ) + ( C - D ) ) = ( C - D ) ) |
| 36 |
30 35
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) - ( A + D ) ) = ( C - D ) ) |
| 37 |
3
|
nn0zd |
|- ( ph -> C e. ZZ ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. ZZ ) |
| 39 |
4
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> D e. ZZ ) |
| 40 |
38 39
|
zsubcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) e. ZZ ) |
| 41 |
6
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> D <_ C ) |
| 42 |
38
|
zred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. RR ) |
| 43 |
42 28
|
subge0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( 0 <_ ( C - D ) <-> D <_ C ) ) |
| 44 |
41 43
|
mpbird |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 <_ ( C - D ) ) |
| 45 |
40 44
|
jca |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( C - D ) e. ZZ /\ 0 <_ ( C - D ) ) ) |
| 46 |
|
elnn0z |
|- ( ( C - D ) e. NN0 <-> ( ( C - D ) e. ZZ /\ 0 <_ ( C - D ) ) ) |
| 47 |
45 46
|
sylibr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) e. NN0 ) |
| 48 |
36 47
|
eqeltrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) - ( A + D ) ) e. NN0 ) |
| 49 |
48
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( A + D ) ) ) e. NN ) |
| 50 |
49
|
nnnn0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( A + D ) ) ) e. NN0 ) |
| 51 |
50
|
nn0cnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( A + D ) ) ) e. CC ) |
| 52 |
19
|
nnne0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) =/= 0 ) |
| 53 |
49
|
nnne0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( A + D ) ) ) =/= 0 ) |
| 54 |
12 21 51 52 53
|
divdiv1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( ( A + C ) - ( A + D ) ) ) ) = ( ( ! ` ( A + C ) ) / ( ( ! ` ( A + D ) ) x. ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) ) |
| 55 |
54
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ( ! ` ( A + D ) ) x. ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) = ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) |
| 56 |
|
0zd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 e. ZZ ) |
| 57 |
10
|
nn0zd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + C ) e. ZZ ) |
| 58 |
28
|
renegcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> -u D e. RR ) |
| 59 |
3
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. NN0 ) |
| 60 |
59
|
nn0red |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. RR ) |
| 61 |
|
df-neg |
|- -u D = ( 0 - D ) |
| 62 |
61
|
a1i |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> -u D = ( 0 - D ) ) |
| 63 |
15
|
adantl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 <_ ( A + D ) ) |
| 64 |
|
0red |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 e. RR ) |
| 65 |
64 28 23
|
lesubaddd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( 0 - D ) <_ A <-> 0 <_ ( A + D ) ) ) |
| 66 |
63 65
|
mpbird |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( 0 - D ) <_ A ) |
| 67 |
62 66
|
eqbrtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> -u D <_ A ) |
| 68 |
58 23 60 67
|
leadd2dd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C + -u D ) <_ ( C + A ) ) |
| 69 |
26 29
|
negsubd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C + -u D ) = ( C - D ) ) |
| 70 |
26 24
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C + A ) = ( A + C ) ) |
| 71 |
68 69 70
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) <_ ( A + C ) ) |
| 72 |
56 57 40 44 71
|
elfzd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) e. ( 0 ... ( A + C ) ) ) |
| 73 |
|
fallfacval4 |
|- ( ( C - D ) e. ( 0 ... ( A + C ) ) -> ( ( A + C ) FallFac ( C - D ) ) = ( ( ! ` ( A + C ) ) / ( ! ` ( ( A + C ) - ( C - D ) ) ) ) ) |
| 74 |
72 73
|
syl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) FallFac ( C - D ) ) = ( ( ! ` ( A + C ) ) / ( ! ` ( ( A + C ) - ( C - D ) ) ) ) ) |
| 75 |
9
|
nn0cnd |
|- ( ph -> ( A + C ) e. CC ) |
| 76 |
27
|
recnd |
|- ( ph -> D e. CC ) |
| 77 |
75 25 76
|
subsubd |
|- ( ph -> ( ( A + C ) - ( C - D ) ) = ( ( ( A + C ) - C ) + D ) ) |
| 78 |
22
|
recnd |
|- ( ph -> A e. CC ) |
| 79 |
78 25
|
pncand |
|- ( ph -> ( ( A + C ) - C ) = A ) |
| 80 |
79
|
oveq1d |
|- ( ph -> ( ( ( A + C ) - C ) + D ) = ( A + D ) ) |
| 81 |
77 80
|
eqtrd |
|- ( ph -> ( ( A + C ) - ( C - D ) ) = ( A + D ) ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) - ( C - D ) ) = ( A + D ) ) |
| 83 |
82
|
fveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( C - D ) ) ) = ( ! ` ( A + D ) ) ) |
| 84 |
83
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ! ` ( ( A + C ) - ( C - D ) ) ) ) = ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) ) |
| 85 |
74 84
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) FallFac ( C - D ) ) = ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) ) |
| 86 |
85
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) = ( ( A + C ) FallFac ( C - D ) ) ) |
| 87 |
|
nfv |
|- F/ k ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) |
| 88 |
|
fzfid |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( 0 ... ( ( C - D ) - 1 ) ) e. Fin ) |
| 89 |
23
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> A e. RR ) |
| 90 |
3
|
nn0red |
|- ( ph -> C e. RR ) |
| 91 |
90
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C e. RR ) |
| 92 |
91
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> C e. RR ) |
| 93 |
89 92
|
readdcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( A + C ) e. RR ) |
| 94 |
|
elfzelz |
|- ( k e. ( 0 ... ( ( C - D ) - 1 ) ) -> k e. ZZ ) |
| 95 |
94
|
zred |
|- ( k e. ( 0 ... ( ( C - D ) - 1 ) ) -> k e. RR ) |
| 96 |
95
|
adantl |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> k e. RR ) |
| 97 |
93 96
|
resubcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( A + C ) - k ) e. RR ) |
| 98 |
|
0red |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> 0 e. RR ) |
| 99 |
98 96
|
readdcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( 0 + k ) e. RR ) |
| 100 |
28
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> D e. RR ) |
| 101 |
92 100
|
resubcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( C - D ) e. RR ) |
| 102 |
|
1red |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> 1 e. RR ) |
| 103 |
101 102
|
resubcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( C - D ) - 1 ) e. RR ) |
| 104 |
96
|
recnd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> k e. CC ) |
| 105 |
104
|
addlidd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( 0 + k ) = k ) |
| 106 |
|
elfzle2 |
|- ( k e. ( 0 ... ( ( C - D ) - 1 ) ) -> k <_ ( ( C - D ) - 1 ) ) |
| 107 |
106
|
adantl |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> k <_ ( ( C - D ) - 1 ) ) |
| 108 |
105 107
|
eqbrtrd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( 0 + k ) <_ ( ( C - D ) - 1 ) ) |
| 109 |
101
|
lem1d |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( C - D ) - 1 ) <_ ( C - D ) ) |
| 110 |
71
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( C - D ) <_ ( A + C ) ) |
| 111 |
103 101 93 109 110
|
letrd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( C - D ) - 1 ) <_ ( A + C ) ) |
| 112 |
99 103 93 108 111
|
letrd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( 0 + k ) <_ ( A + C ) ) |
| 113 |
64
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> 0 e. RR ) |
| 114 |
|
leaddsub |
|- ( ( 0 e. RR /\ k e. RR /\ ( A + C ) e. RR ) -> ( ( 0 + k ) <_ ( A + C ) <-> 0 <_ ( ( A + C ) - k ) ) ) |
| 115 |
113 96 93 114
|
syl3anc |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( 0 + k ) <_ ( A + C ) <-> 0 <_ ( ( A + C ) - k ) ) ) |
| 116 |
112 115
|
mpbid |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> 0 <_ ( ( A + C ) - k ) ) |
| 117 |
2
|
nn0red |
|- ( ph -> B e. RR ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> B e. RR ) |
| 119 |
118
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> B e. RR ) |
| 120 |
119 92
|
readdcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( B + C ) e. RR ) |
| 121 |
120 96
|
resubcld |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( B + C ) - k ) e. RR ) |
| 122 |
5
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> A <_ B ) |
| 123 |
122
|
adantr |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> A <_ B ) |
| 124 |
89 119 92 123
|
leadd1dd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( A + C ) <_ ( B + C ) ) |
| 125 |
93 120 96 124
|
lesub1dd |
|- ( ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ k e. ( 0 ... ( ( C - D ) - 1 ) ) ) -> ( ( A + C ) - k ) <_ ( ( B + C ) - k ) ) |
| 126 |
87 88 97 116 121 125
|
fprodle |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( A + C ) - k ) <_ prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( B + C ) - k ) ) |
| 127 |
75
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + C ) e. CC ) |
| 128 |
|
fallfacval |
|- ( ( ( A + C ) e. CC /\ ( C - D ) e. NN0 ) -> ( ( A + C ) FallFac ( C - D ) ) = prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( A + C ) - k ) ) |
| 129 |
127 47 128
|
syl2anc |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) FallFac ( C - D ) ) = prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( A + C ) - k ) ) |
| 130 |
129
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( A + C ) - k ) = ( ( A + C ) FallFac ( C - D ) ) ) |
| 131 |
118
|
recnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> B e. CC ) |
| 132 |
131 26
|
addcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + C ) e. CC ) |
| 133 |
|
fallfacval |
|- ( ( ( B + C ) e. CC /\ ( C - D ) e. NN0 ) -> ( ( B + C ) FallFac ( C - D ) ) = prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( B + C ) - k ) ) |
| 134 |
132 47 133
|
syl2anc |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) FallFac ( C - D ) ) = prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( B + C ) - k ) ) |
| 135 |
134
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> prod_ k e. ( 0 ... ( ( C - D ) - 1 ) ) ( ( B + C ) - k ) = ( ( B + C ) FallFac ( C - D ) ) ) |
| 136 |
126 130 135
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) FallFac ( C - D ) ) <_ ( ( B + C ) FallFac ( C - D ) ) ) |
| 137 |
2
|
nn0zd |
|- ( ph -> B e. ZZ ) |
| 138 |
137 37
|
zaddcld |
|- ( ph -> ( B + C ) e. ZZ ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + C ) e. ZZ ) |
| 140 |
23 28
|
readdcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) e. RR ) |
| 141 |
137 4
|
zaddcld |
|- ( ph -> ( B + D ) e. ZZ ) |
| 142 |
141
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) e. ZZ ) |
| 143 |
142
|
zred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) e. RR ) |
| 144 |
23 118 28 122
|
leadd1dd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) <_ ( B + D ) ) |
| 145 |
64 140 143 63 144
|
letrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 <_ ( B + D ) ) |
| 146 |
64 28 118
|
lesubaddd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( 0 - D ) <_ B <-> 0 <_ ( B + D ) ) ) |
| 147 |
145 146
|
mpbird |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( 0 - D ) <_ B ) |
| 148 |
62 147
|
eqbrtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> -u D <_ B ) |
| 149 |
58 118 60 148
|
leadd2dd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C + -u D ) <_ ( C + B ) ) |
| 150 |
26 131
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C + B ) = ( B + C ) ) |
| 151 |
149 69 150
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) <_ ( B + C ) ) |
| 152 |
56 139 40 44 151
|
elfzd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) e. ( 0 ... ( B + C ) ) ) |
| 153 |
|
fallfacval4 |
|- ( ( C - D ) e. ( 0 ... ( B + C ) ) -> ( ( B + C ) FallFac ( C - D ) ) = ( ( ! ` ( B + C ) ) / ( ! ` ( ( B + C ) - ( C - D ) ) ) ) ) |
| 154 |
152 153
|
syl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) FallFac ( C - D ) ) = ( ( ! ` ( B + C ) ) / ( ! ` ( ( B + C ) - ( C - D ) ) ) ) ) |
| 155 |
132 26 29
|
subsubd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - ( C - D ) ) = ( ( ( B + C ) - C ) + D ) ) |
| 156 |
131 26
|
pncand |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - C ) = B ) |
| 157 |
156
|
oveq1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( B + C ) - C ) + D ) = ( B + D ) ) |
| 158 |
155 157
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - ( C - D ) ) = ( B + D ) ) |
| 159 |
158
|
fveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( B + C ) - ( C - D ) ) ) = ( ! ` ( B + D ) ) ) |
| 160 |
159
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( B + C ) ) / ( ! ` ( ( B + C ) - ( C - D ) ) ) ) = ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) ) |
| 161 |
154 160
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) FallFac ( C - D ) ) = ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) ) |
| 162 |
136 161
|
breqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) FallFac ( C - D ) ) <_ ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) ) |
| 163 |
86 162
|
eqbrtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) <_ ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) ) |
| 164 |
11
|
nnred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + C ) ) e. RR ) |
| 165 |
19
|
nnred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) e. RR ) |
| 166 |
164 165 52
|
redivcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) e. RR ) |
| 167 |
2
|
adantr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> B e. NN0 ) |
| 168 |
167 59
|
nn0addcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + C ) e. NN0 ) |
| 169 |
168
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + C ) ) e. NN ) |
| 170 |
169
|
nnred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + C ) ) e. RR ) |
| 171 |
142 145
|
jca |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) e. ZZ /\ 0 <_ ( B + D ) ) ) |
| 172 |
|
elnn0z |
|- ( ( B + D ) e. NN0 <-> ( ( B + D ) e. ZZ /\ 0 <_ ( B + D ) ) ) |
| 173 |
171 172
|
sylibr |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) e. NN0 ) |
| 174 |
173
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + D ) ) e. NN ) |
| 175 |
174
|
nnred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + D ) ) e. RR ) |
| 176 |
174
|
nnne0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + D ) ) =/= 0 ) |
| 177 |
170 175 176
|
redivcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) e. RR ) |
| 178 |
35
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) = ( ( A - A ) + ( C - D ) ) ) |
| 179 |
30
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - A ) + ( C - D ) ) = ( ( A + C ) - ( A + D ) ) ) |
| 180 |
178 179
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) = ( ( A + C ) - ( A + D ) ) ) |
| 181 |
180
|
fveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( C - D ) ) = ( ! ` ( ( A + C ) - ( A + D ) ) ) ) |
| 182 |
181 49
|
eqeltrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( C - D ) ) e. NN ) |
| 183 |
182
|
nnrpd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( C - D ) ) e. RR+ ) |
| 184 |
166 177 183
|
lediv1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) <_ ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) <-> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( C - D ) ) ) <_ ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( C - D ) ) ) ) ) |
| 185 |
163 184
|
mpbid |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( C - D ) ) ) <_ ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( C - D ) ) ) ) |
| 186 |
181
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( C - D ) ) ) = ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) |
| 187 |
131 26
|
pncan2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - B ) = C ) |
| 188 |
187
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> C = ( ( B + C ) - B ) ) |
| 189 |
188
|
oveq1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) = ( ( ( B + C ) - B ) - D ) ) |
| 190 |
132 131 29
|
subsub4d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( B + C ) - B ) - D ) = ( ( B + C ) - ( B + D ) ) ) |
| 191 |
189 190
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( C - D ) = ( ( B + C ) - ( B + D ) ) ) |
| 192 |
191
|
fveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( C - D ) ) = ( ! ` ( ( B + C ) - ( B + D ) ) ) ) |
| 193 |
192
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( C - D ) ) ) = ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) |
| 194 |
185 186 193
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( ( A + C ) - ( A + D ) ) ) ) <_ ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) |
| 195 |
169
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + C ) ) e. CC ) |
| 196 |
174
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( B + D ) ) e. CC ) |
| 197 |
131 26 29
|
pnpcand |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - ( B + D ) ) = ( C - D ) ) |
| 198 |
197 47
|
eqeltrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) - ( B + D ) ) e. NN0 ) |
| 199 |
198
|
faccld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( B + C ) - ( B + D ) ) ) e. NN ) |
| 200 |
199
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( B + C ) - ( B + D ) ) ) e. CC ) |
| 201 |
199
|
nnne0d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( B + C ) - ( B + D ) ) ) =/= 0 ) |
| 202 |
195 196 200 176 201
|
divdiv1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( B + C ) ) / ( ! ` ( B + D ) ) ) / ( ! ` ( ( B + C ) - ( B + D ) ) ) ) = ( ( ! ` ( B + C ) ) / ( ( ! ` ( B + D ) ) x. ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) ) |
| 203 |
194 202
|
breqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( ! ` ( A + C ) ) / ( ! ` ( A + D ) ) ) / ( ! ` ( ( A + C ) - ( A + D ) ) ) ) <_ ( ( ! ` ( B + C ) ) / ( ( ! ` ( B + D ) ) x. ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) ) |
| 204 |
55 203
|
eqbrtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ( ! ` ( A + D ) ) x. ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) <_ ( ( ! ` ( B + C ) ) / ( ( ! ` ( B + D ) ) x. ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) ) |
| 205 |
19
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( A + D ) ) e. CC ) |
| 206 |
49
|
nncnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ! ` ( ( A + C ) - ( A + D ) ) ) e. CC ) |
| 207 |
205 206
|
mulcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + D ) ) x. ( ! ` ( ( A + C ) - ( A + D ) ) ) ) = ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) |
| 208 |
207
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ( ! ` ( A + D ) ) x. ( ! ` ( ( A + C ) - ( A + D ) ) ) ) ) = ( ( ! ` ( A + C ) ) / ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) ) |
| 209 |
196 200
|
mulcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( B + D ) ) x. ( ! ` ( ( B + C ) - ( B + D ) ) ) ) = ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) |
| 210 |
209
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( B + C ) ) / ( ( ! ` ( B + D ) ) x. ( ! ` ( ( B + C ) - ( B + D ) ) ) ) ) = ( ( ! ` ( B + C ) ) / ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) ) |
| 211 |
204 208 210
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) <_ ( ( ! ` ( B + C ) ) / ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) ) |
| 212 |
|
elfzle2 |
|- ( ( A + D ) e. ( 0 ... ( A + C ) ) -> ( A + D ) <_ ( A + C ) ) |
| 213 |
212
|
adantl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) <_ ( A + C ) ) |
| 214 |
131 29
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) = ( D + B ) ) |
| 215 |
214
|
oveq1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) + ( A - B ) ) = ( ( D + B ) + ( A - B ) ) ) |
| 216 |
29 131
|
addcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( D + B ) e. CC ) |
| 217 |
23 118
|
resubcld |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A - B ) e. RR ) |
| 218 |
217
|
recnd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A - B ) e. CC ) |
| 219 |
216 218
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( D + B ) + ( A - B ) ) = ( ( A - B ) + ( D + B ) ) ) |
| 220 |
215 219
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) + ( A - B ) ) = ( ( A - B ) + ( D + B ) ) ) |
| 221 |
218 29 131
|
addassd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( A - B ) + D ) + B ) = ( ( A - B ) + ( D + B ) ) ) |
| 222 |
221
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - B ) + ( D + B ) ) = ( ( ( A - B ) + D ) + B ) ) |
| 223 |
220 222
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) + ( A - B ) ) = ( ( ( A - B ) + D ) + B ) ) |
| 224 |
24 131 29
|
nppcand |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( A - B ) + D ) + B ) = ( A + D ) ) |
| 225 |
223 224
|
eqtr2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) = ( ( B + D ) + ( A - B ) ) ) |
| 226 |
132 218
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) + ( A - B ) ) = ( ( A - B ) + ( B + C ) ) ) |
| 227 |
131 26
|
addcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + C ) = ( C + B ) ) |
| 228 |
227
|
oveq2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - B ) + ( B + C ) ) = ( ( A - B ) + ( C + B ) ) ) |
| 229 |
226 228
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) + ( A - B ) ) = ( ( A - B ) + ( C + B ) ) ) |
| 230 |
218 26 131
|
addassd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( A - B ) + C ) + B ) = ( ( A - B ) + ( C + B ) ) ) |
| 231 |
230
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A - B ) + ( C + B ) ) = ( ( ( A - B ) + C ) + B ) ) |
| 232 |
229 231
|
eqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) + ( A - B ) ) = ( ( ( A - B ) + C ) + B ) ) |
| 233 |
24 131 26
|
nppcand |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ( A - B ) + C ) + B ) = ( A + C ) ) |
| 234 |
232 233
|
eqtr2d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + C ) = ( ( B + C ) + ( A - B ) ) ) |
| 235 |
213 225 234
|
3brtr3d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) + ( A - B ) ) <_ ( ( B + C ) + ( A - B ) ) ) |
| 236 |
139
|
zred |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + C ) e. RR ) |
| 237 |
143 236 217
|
leadd1d |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + D ) <_ ( B + C ) <-> ( ( B + D ) + ( A - B ) ) <_ ( ( B + C ) + ( A - B ) ) ) ) |
| 238 |
235 237
|
mpbird |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) <_ ( B + C ) ) |
| 239 |
56 139 142 145 238
|
elfzd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) e. ( 0 ... ( B + C ) ) ) |
| 240 |
|
bcval2 |
|- ( ( B + D ) e. ( 0 ... ( B + C ) ) -> ( ( B + C ) _C ( B + D ) ) = ( ( ! ` ( B + C ) ) / ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) ) |
| 241 |
239 240
|
syl |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( B + C ) _C ( B + D ) ) = ( ( ! ` ( B + C ) ) / ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) ) |
| 242 |
241
|
eqcomd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( B + C ) ) / ( ( ! ` ( ( B + C ) - ( B + D ) ) ) x. ( ! ` ( B + D ) ) ) ) = ( ( B + C ) _C ( B + D ) ) ) |
| 243 |
211 242
|
breqtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( ! ` ( A + C ) ) / ( ( ! ` ( ( A + C ) - ( A + D ) ) ) x. ( ! ` ( A + D ) ) ) ) <_ ( ( B + C ) _C ( B + D ) ) ) |
| 244 |
8 243
|
eqbrtrd |
|- ( ( ph /\ ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) _C ( A + D ) ) <_ ( ( B + C ) _C ( B + D ) ) ) |
| 245 |
9
|
adantr |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + C ) e. NN0 ) |
| 246 |
14
|
adantr |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( A + D ) e. ZZ ) |
| 247 |
|
simpr |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> -. ( A + D ) e. ( 0 ... ( A + C ) ) ) |
| 248 |
|
bcval3 |
|- ( ( ( A + C ) e. NN0 /\ ( A + D ) e. ZZ /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) _C ( A + D ) ) = 0 ) |
| 249 |
245 246 247 248
|
syl3anc |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) _C ( A + D ) ) = 0 ) |
| 250 |
|
bccl2 |
|- ( ( B + D ) e. ( 0 ... ( B + C ) ) -> ( ( B + C ) _C ( B + D ) ) e. NN ) |
| 251 |
250
|
adantl |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( ( B + C ) _C ( B + D ) ) e. NN ) |
| 252 |
251
|
nnnn0d |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( ( B + C ) _C ( B + D ) ) e. NN0 ) |
| 253 |
252
|
nn0ge0d |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ ( B + D ) e. ( 0 ... ( B + C ) ) ) -> 0 <_ ( ( B + C ) _C ( B + D ) ) ) |
| 254 |
|
0le0 |
|- 0 <_ 0 |
| 255 |
254
|
a1i |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> 0 <_ 0 ) |
| 256 |
2
|
ad2antrr |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> B e. NN0 ) |
| 257 |
3
|
ad2antrr |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> C e. NN0 ) |
| 258 |
256 257
|
nn0addcld |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( B + C ) e. NN0 ) |
| 259 |
141
|
adantr |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( B + D ) e. ZZ ) |
| 260 |
259
|
adantr |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( B + D ) e. ZZ ) |
| 261 |
|
simpr |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> -. ( B + D ) e. ( 0 ... ( B + C ) ) ) |
| 262 |
|
bcval3 |
|- ( ( ( B + C ) e. NN0 /\ ( B + D ) e. ZZ /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( ( B + C ) _C ( B + D ) ) = 0 ) |
| 263 |
258 260 261 262
|
syl3anc |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> ( ( B + C ) _C ( B + D ) ) = 0 ) |
| 264 |
263
|
eqcomd |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> 0 = ( ( B + C ) _C ( B + D ) ) ) |
| 265 |
255 264
|
breqtrd |
|- ( ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) /\ -. ( B + D ) e. ( 0 ... ( B + C ) ) ) -> 0 <_ ( ( B + C ) _C ( B + D ) ) ) |
| 266 |
253 265
|
pm2.61dan |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> 0 <_ ( ( B + C ) _C ( B + D ) ) ) |
| 267 |
249 266
|
eqbrtrd |
|- ( ( ph /\ -. ( A + D ) e. ( 0 ... ( A + C ) ) ) -> ( ( A + C ) _C ( A + D ) ) <_ ( ( B + C ) _C ( B + D ) ) ) |
| 268 |
244 267
|
pm2.61dan |
|- ( ph -> ( ( A + C ) _C ( A + D ) ) <_ ( ( B + C ) _C ( B + D ) ) ) |