| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( N e. ( 0 ... A ) -> ( ( ( A - N ) + 1 ) ... A ) e. Fin ) | 
						
							| 2 |  | elfzelz |  |-  ( k e. ( ( ( A - N ) + 1 ) ... A ) -> k e. ZZ ) | 
						
							| 3 | 2 | zcnd |  |-  ( k e. ( ( ( A - N ) + 1 ) ... A ) -> k e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( N e. ( 0 ... A ) /\ k e. ( ( ( A - N ) + 1 ) ... A ) ) -> k e. CC ) | 
						
							| 5 | 1 4 | fprodcl |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k e. CC ) | 
						
							| 6 |  | fzfid |  |-  ( N e. ( 0 ... A ) -> ( 1 ... ( A - N ) ) e. Fin ) | 
						
							| 7 |  | elfznn |  |-  ( k e. ( 1 ... ( A - N ) ) -> k e. NN ) | 
						
							| 8 | 7 | adantl |  |-  ( ( N e. ( 0 ... A ) /\ k e. ( 1 ... ( A - N ) ) ) -> k e. NN ) | 
						
							| 9 | 8 | nncnd |  |-  ( ( N e. ( 0 ... A ) /\ k e. ( 1 ... ( A - N ) ) ) -> k e. CC ) | 
						
							| 10 | 6 9 | fprodcl |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( 1 ... ( A - N ) ) k e. CC ) | 
						
							| 11 | 8 | nnne0d |  |-  ( ( N e. ( 0 ... A ) /\ k e. ( 1 ... ( A - N ) ) ) -> k =/= 0 ) | 
						
							| 12 | 6 9 11 | fprodn0 |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( 1 ... ( A - N ) ) k =/= 0 ) | 
						
							| 13 | 5 10 12 | divcan3d |  |-  ( N e. ( 0 ... A ) -> ( ( prod_ k e. ( 1 ... ( A - N ) ) k x. prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k ) / prod_ k e. ( 1 ... ( A - N ) ) k ) = prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k ) | 
						
							| 14 |  | fznn0sub |  |-  ( N e. ( 0 ... A ) -> ( A - N ) e. NN0 ) | 
						
							| 15 | 14 | nn0red |  |-  ( N e. ( 0 ... A ) -> ( A - N ) e. RR ) | 
						
							| 16 | 15 | ltp1d |  |-  ( N e. ( 0 ... A ) -> ( A - N ) < ( ( A - N ) + 1 ) ) | 
						
							| 17 |  | fzdisj |  |-  ( ( A - N ) < ( ( A - N ) + 1 ) -> ( ( 1 ... ( A - N ) ) i^i ( ( ( A - N ) + 1 ) ... A ) ) = (/) ) | 
						
							| 18 | 16 17 | syl |  |-  ( N e. ( 0 ... A ) -> ( ( 1 ... ( A - N ) ) i^i ( ( ( A - N ) + 1 ) ... A ) ) = (/) ) | 
						
							| 19 |  | nn0p1nn |  |-  ( ( A - N ) e. NN0 -> ( ( A - N ) + 1 ) e. NN ) | 
						
							| 20 | 14 19 | syl |  |-  ( N e. ( 0 ... A ) -> ( ( A - N ) + 1 ) e. NN ) | 
						
							| 21 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 22 | 20 21 | eleqtrdi |  |-  ( N e. ( 0 ... A ) -> ( ( A - N ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 23 | 14 | nn0zd |  |-  ( N e. ( 0 ... A ) -> ( A - N ) e. ZZ ) | 
						
							| 24 |  | elfzel2 |  |-  ( N e. ( 0 ... A ) -> A e. ZZ ) | 
						
							| 25 |  | elfzle1 |  |-  ( N e. ( 0 ... A ) -> 0 <_ N ) | 
						
							| 26 | 24 | zred |  |-  ( N e. ( 0 ... A ) -> A e. RR ) | 
						
							| 27 |  | elfzelz |  |-  ( N e. ( 0 ... A ) -> N e. ZZ ) | 
						
							| 28 | 27 | zred |  |-  ( N e. ( 0 ... A ) -> N e. RR ) | 
						
							| 29 | 26 28 | subge02d |  |-  ( N e. ( 0 ... A ) -> ( 0 <_ N <-> ( A - N ) <_ A ) ) | 
						
							| 30 | 25 29 | mpbid |  |-  ( N e. ( 0 ... A ) -> ( A - N ) <_ A ) | 
						
							| 31 |  | eluz2 |  |-  ( A e. ( ZZ>= ` ( A - N ) ) <-> ( ( A - N ) e. ZZ /\ A e. ZZ /\ ( A - N ) <_ A ) ) | 
						
							| 32 | 23 24 30 31 | syl3anbrc |  |-  ( N e. ( 0 ... A ) -> A e. ( ZZ>= ` ( A - N ) ) ) | 
						
							| 33 |  | fzsplit2 |  |-  ( ( ( ( A - N ) + 1 ) e. ( ZZ>= ` 1 ) /\ A e. ( ZZ>= ` ( A - N ) ) ) -> ( 1 ... A ) = ( ( 1 ... ( A - N ) ) u. ( ( ( A - N ) + 1 ) ... A ) ) ) | 
						
							| 34 | 22 32 33 | syl2anc |  |-  ( N e. ( 0 ... A ) -> ( 1 ... A ) = ( ( 1 ... ( A - N ) ) u. ( ( ( A - N ) + 1 ) ... A ) ) ) | 
						
							| 35 |  | fzfid |  |-  ( N e. ( 0 ... A ) -> ( 1 ... A ) e. Fin ) | 
						
							| 36 |  | elfznn |  |-  ( k e. ( 1 ... A ) -> k e. NN ) | 
						
							| 37 | 36 | nncnd |  |-  ( k e. ( 1 ... A ) -> k e. CC ) | 
						
							| 38 | 37 | adantl |  |-  ( ( N e. ( 0 ... A ) /\ k e. ( 1 ... A ) ) -> k e. CC ) | 
						
							| 39 | 18 34 35 38 | fprodsplit |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( 1 ... A ) k = ( prod_ k e. ( 1 ... ( A - N ) ) k x. prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( N e. ( 0 ... A ) -> ( prod_ k e. ( 1 ... A ) k / prod_ k e. ( 1 ... ( A - N ) ) k ) = ( ( prod_ k e. ( 1 ... ( A - N ) ) k x. prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k ) / prod_ k e. ( 1 ... ( A - N ) ) k ) ) | 
						
							| 41 | 24 | zcnd |  |-  ( N e. ( 0 ... A ) -> A e. CC ) | 
						
							| 42 | 27 | zcnd |  |-  ( N e. ( 0 ... A ) -> N e. CC ) | 
						
							| 43 |  | 1cnd |  |-  ( N e. ( 0 ... A ) -> 1 e. CC ) | 
						
							| 44 | 41 42 43 | subsubd |  |-  ( N e. ( 0 ... A ) -> ( A - ( N - 1 ) ) = ( ( A - N ) + 1 ) ) | 
						
							| 45 | 44 | oveq1d |  |-  ( N e. ( 0 ... A ) -> ( ( A - ( N - 1 ) ) ... A ) = ( ( ( A - N ) + 1 ) ... A ) ) | 
						
							| 46 | 45 | prodeq1d |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k = prod_ k e. ( ( ( A - N ) + 1 ) ... A ) k ) | 
						
							| 47 | 13 40 46 | 3eqtr4rd |  |-  ( N e. ( 0 ... A ) -> prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k = ( prod_ k e. ( 1 ... A ) k / prod_ k e. ( 1 ... ( A - N ) ) k ) ) | 
						
							| 48 |  | fallfacval3 |  |-  ( N e. ( 0 ... A ) -> ( A FallFac N ) = prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k ) | 
						
							| 49 |  | elfz3nn0 |  |-  ( N e. ( 0 ... A ) -> A e. NN0 ) | 
						
							| 50 |  | fprodfac |  |-  ( A e. NN0 -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) | 
						
							| 51 | 49 50 | syl |  |-  ( N e. ( 0 ... A ) -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) | 
						
							| 52 |  | fprodfac |  |-  ( ( A - N ) e. NN0 -> ( ! ` ( A - N ) ) = prod_ k e. ( 1 ... ( A - N ) ) k ) | 
						
							| 53 | 14 52 | syl |  |-  ( N e. ( 0 ... A ) -> ( ! ` ( A - N ) ) = prod_ k e. ( 1 ... ( A - N ) ) k ) | 
						
							| 54 | 51 53 | oveq12d |  |-  ( N e. ( 0 ... A ) -> ( ( ! ` A ) / ( ! ` ( A - N ) ) ) = ( prod_ k e. ( 1 ... A ) k / prod_ k e. ( 1 ... ( A - N ) ) k ) ) | 
						
							| 55 | 47 48 54 | 3eqtr4d |  |-  ( N e. ( 0 ... A ) -> ( A FallFac N ) = ( ( ! ` A ) / ( ! ` ( A - N ) ) ) ) |