Step |
Hyp |
Ref |
Expression |
1 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
2 |
1
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
3 |
2
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. CC ) |
4 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
5 |
4
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
6 |
5
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
7 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
8 |
7
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) |
9 |
8
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) |
10 |
5
|
nnne0d |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) =/= 0 ) |
11 |
8
|
nnne0d |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) =/= 0 ) |
12 |
3 6 9 10 11
|
divdiv1d |
|- ( K e. ( 0 ... N ) -> ( ( ( ! ` N ) / ( ! ` ( N - K ) ) ) / ( ! ` K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
13 |
|
fallfacval4 |
|- ( K e. ( 0 ... N ) -> ( N FallFac K ) = ( ( ! ` N ) / ( ! ` ( N - K ) ) ) ) |
14 |
13
|
oveq1d |
|- ( K e. ( 0 ... N ) -> ( ( N FallFac K ) / ( ! ` K ) ) = ( ( ( ! ` N ) / ( ! ` ( N - K ) ) ) / ( ! ` K ) ) ) |
15 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
16 |
12 14 15
|
3eqtr4rd |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( N FallFac K ) / ( ! ` K ) ) ) |