| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfz3nn0 |  |-  ( K e. ( 0 ... N ) -> N e. NN0 ) | 
						
							| 2 | 1 | faccld |  |-  ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) | 
						
							| 3 | 2 | nncnd |  |-  ( K e. ( 0 ... N ) -> ( ! ` N ) e. CC ) | 
						
							| 4 |  | fznn0sub |  |-  ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) | 
						
							| 5 | 4 | faccld |  |-  ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) | 
						
							| 6 | 5 | nncnd |  |-  ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) | 
						
							| 7 |  | elfznn0 |  |-  ( K e. ( 0 ... N ) -> K e. NN0 ) | 
						
							| 8 | 7 | faccld |  |-  ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) | 
						
							| 9 | 8 | nncnd |  |-  ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) | 
						
							| 10 | 5 | nnne0d |  |-  ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) =/= 0 ) | 
						
							| 11 | 8 | nnne0d |  |-  ( K e. ( 0 ... N ) -> ( ! ` K ) =/= 0 ) | 
						
							| 12 | 3 6 9 10 11 | divdiv1d |  |-  ( K e. ( 0 ... N ) -> ( ( ( ! ` N ) / ( ! ` ( N - K ) ) ) / ( ! ` K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 13 |  | fallfacval4 |  |-  ( K e. ( 0 ... N ) -> ( N FallFac K ) = ( ( ! ` N ) / ( ! ` ( N - K ) ) ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( K e. ( 0 ... N ) -> ( ( N FallFac K ) / ( ! ` K ) ) = ( ( ( ! ` N ) / ( ! ` ( N - K ) ) ) / ( ! ` K ) ) ) | 
						
							| 15 |  | bcval2 |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 16 | 12 14 15 | 3eqtr4rd |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( N FallFac K ) / ( ! ` K ) ) ) |