| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0fz0 |  |-  ( N e. NN0 <-> N e. ( 0 ... N ) ) | 
						
							| 2 |  | fallfacval4 |  |-  ( N e. ( 0 ... N ) -> ( N FallFac N ) = ( ( ! ` N ) / ( ! ` ( N - N ) ) ) ) | 
						
							| 3 | 1 2 | sylbi |  |-  ( N e. NN0 -> ( N FallFac N ) = ( ( ! ` N ) / ( ! ` ( N - N ) ) ) ) | 
						
							| 4 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 5 | 4 | subidd |  |-  ( N e. NN0 -> ( N - N ) = 0 ) | 
						
							| 6 | 5 | fveq2d |  |-  ( N e. NN0 -> ( ! ` ( N - N ) ) = ( ! ` 0 ) ) | 
						
							| 7 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 8 | 6 7 | eqtrdi |  |-  ( N e. NN0 -> ( ! ` ( N - N ) ) = 1 ) | 
						
							| 9 | 8 | oveq2d |  |-  ( N e. NN0 -> ( ( ! ` N ) / ( ! ` ( N - N ) ) ) = ( ( ! ` N ) / 1 ) ) | 
						
							| 10 |  | faccl |  |-  ( N e. NN0 -> ( ! ` N ) e. NN ) | 
						
							| 11 | 10 | nncnd |  |-  ( N e. NN0 -> ( ! ` N ) e. CC ) | 
						
							| 12 | 11 | div1d |  |-  ( N e. NN0 -> ( ( ! ` N ) / 1 ) = ( ! ` N ) ) | 
						
							| 13 | 3 9 12 | 3eqtrd |  |-  ( N e. NN0 -> ( N FallFac N ) = ( ! ` N ) ) |