Step |
Hyp |
Ref |
Expression |
1 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
2 |
|
fallfacval4 |
|- ( N e. ( 0 ... N ) -> ( N FallFac N ) = ( ( ! ` N ) / ( ! ` ( N - N ) ) ) ) |
3 |
1 2
|
sylbi |
|- ( N e. NN0 -> ( N FallFac N ) = ( ( ! ` N ) / ( ! ` ( N - N ) ) ) ) |
4 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
5 |
4
|
subidd |
|- ( N e. NN0 -> ( N - N ) = 0 ) |
6 |
5
|
fveq2d |
|- ( N e. NN0 -> ( ! ` ( N - N ) ) = ( ! ` 0 ) ) |
7 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
8 |
6 7
|
eqtrdi |
|- ( N e. NN0 -> ( ! ` ( N - N ) ) = 1 ) |
9 |
8
|
oveq2d |
|- ( N e. NN0 -> ( ( ! ` N ) / ( ! ` ( N - N ) ) ) = ( ( ! ` N ) / 1 ) ) |
10 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
11 |
10
|
nncnd |
|- ( N e. NN0 -> ( ! ` N ) e. CC ) |
12 |
11
|
div1d |
|- ( N e. NN0 -> ( ( ! ` N ) / 1 ) = ( ! ` N ) ) |
13 |
3 9 12
|
3eqtrd |
|- ( N e. NN0 -> ( N FallFac N ) = ( ! ` N ) ) |