| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0fz0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 2 |  | fallfacval4 | ⊢ ( 𝑁  ∈  ( 0 ... 𝑁 )  →  ( 𝑁  FallFac  𝑁 )  =  ( ( ! ‘ 𝑁 )  /  ( ! ‘ ( 𝑁  −  𝑁 ) ) ) ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  FallFac  𝑁 )  =  ( ( ! ‘ 𝑁 )  /  ( ! ‘ ( 𝑁  −  𝑁 ) ) ) ) | 
						
							| 4 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 4 | subidd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  −  𝑁 )  =  0 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ ( 𝑁  −  𝑁 ) )  =  ( ! ‘ 0 ) ) | 
						
							| 7 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ ( 𝑁  −  𝑁 ) )  =  1 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ! ‘ 𝑁 )  /  ( ! ‘ ( 𝑁  −  𝑁 ) ) )  =  ( ( ! ‘ 𝑁 )  /  1 ) ) | 
						
							| 10 |  | faccl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 11 | 10 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 12 | 11 | div1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ! ‘ 𝑁 )  /  1 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 13 | 3 9 12 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  FallFac  𝑁 )  =  ( ! ‘ 𝑁 ) ) |