Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
fallfacfac
Next ⟩
Bernoulli polynomials and sums of k-th powers
Metamath Proof Explorer
Ascii
Unicode
Theorem
fallfacfac
Description:
Relate falling factorial to factorial.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
fallfacfac
⊢
N
∈
ℕ
0
→
N
N
_
=
N
!
Proof
Step
Hyp
Ref
Expression
1
nn0fz0
⊢
N
∈
ℕ
0
↔
N
∈
0
…
N
2
fallfacval4
⊢
N
∈
0
…
N
→
N
N
_
=
N
!
N
−
N
!
3
1
2
sylbi
⊢
N
∈
ℕ
0
→
N
N
_
=
N
!
N
−
N
!
4
nn0cn
⊢
N
∈
ℕ
0
→
N
∈
ℂ
5
4
subidd
⊢
N
∈
ℕ
0
→
N
−
N
=
0
6
5
fveq2d
⊢
N
∈
ℕ
0
→
N
−
N
!
=
0
!
7
fac0
⊢
0
!
=
1
8
6
7
eqtrdi
⊢
N
∈
ℕ
0
→
N
−
N
!
=
1
9
8
oveq2d
⊢
N
∈
ℕ
0
→
N
!
N
−
N
!
=
N
!
1
10
faccl
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ
11
10
nncnd
⊢
N
∈
ℕ
0
→
N
!
∈
ℂ
12
11
div1d
⊢
N
∈
ℕ
0
→
N
!
1
=
N
!
13
3
9
12
3eqtrd
⊢
N
∈
ℕ
0
→
N
N
_
=
N
!