| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
elfzelz |
|
| 3 |
2
|
zcnd |
|
| 4 |
3
|
adantl |
|
| 5 |
1 4
|
fprodcl |
|
| 6 |
|
fzfid |
|
| 7 |
|
elfznn |
|
| 8 |
7
|
adantl |
|
| 9 |
8
|
nncnd |
|
| 10 |
6 9
|
fprodcl |
|
| 11 |
8
|
nnne0d |
|
| 12 |
6 9 11
|
fprodn0 |
|
| 13 |
5 10 12
|
divcan3d |
|
| 14 |
|
fznn0sub |
|
| 15 |
14
|
nn0red |
|
| 16 |
15
|
ltp1d |
|
| 17 |
|
fzdisj |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
nn0p1nn |
|
| 20 |
14 19
|
syl |
|
| 21 |
|
nnuz |
|
| 22 |
20 21
|
eleqtrdi |
|
| 23 |
14
|
nn0zd |
|
| 24 |
|
elfzel2 |
|
| 25 |
|
elfzle1 |
|
| 26 |
24
|
zred |
|
| 27 |
|
elfzelz |
|
| 28 |
27
|
zred |
|
| 29 |
26 28
|
subge02d |
|
| 30 |
25 29
|
mpbid |
|
| 31 |
|
eluz2 |
|
| 32 |
23 24 30 31
|
syl3anbrc |
|
| 33 |
|
fzsplit2 |
|
| 34 |
22 32 33
|
syl2anc |
|
| 35 |
|
fzfid |
|
| 36 |
|
elfznn |
|
| 37 |
36
|
nncnd |
|
| 38 |
37
|
adantl |
|
| 39 |
18 34 35 38
|
fprodsplit |
|
| 40 |
39
|
oveq1d |
|
| 41 |
24
|
zcnd |
|
| 42 |
27
|
zcnd |
|
| 43 |
|
1cnd |
|
| 44 |
41 42 43
|
subsubd |
|
| 45 |
44
|
oveq1d |
|
| 46 |
45
|
prodeq1d |
|
| 47 |
13 40 46
|
3eqtr4rd |
|
| 48 |
|
fallfacval3 |
|
| 49 |
|
elfz3nn0 |
|
| 50 |
|
fprodfac |
|
| 51 |
49 50
|
syl |
|
| 52 |
|
fprodfac |
|
| 53 |
14 52
|
syl |
|
| 54 |
51 53
|
oveq12d |
|
| 55 |
47 48 54
|
3eqtr4d |
|