| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7lem1.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 2 |  | aks6d1c7lem1.2 |  |-  ( ph -> R e. NN ) | 
						
							| 3 |  | aks6d1c7lem1.3 |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 4 |  | aks6d1c7lem1.4 |  |-  ( ph -> P || N ) | 
						
							| 5 |  | aks6d1c7lem1.5 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 6 |  | aks6d1c7lem1.6 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 7 |  | aks6d1c7lem1.7 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 8 |  | aks6d1c7lem1.8 |  |-  D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 9 |  | aks6d1c7lem1.9 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 10 |  | aks6d1c7lem1.10 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 11 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 13 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 14 |  | 3re |  |-  3 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 3 e. RR ) | 
						
							| 16 | 12 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 17 |  | 3pos |  |-  0 < 3 | 
						
							| 18 | 17 | a1i |  |-  ( ph -> 0 < 3 ) | 
						
							| 19 |  | eluzle |  |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> 3 <_ N ) | 
						
							| 21 | 13 15 16 18 20 | ltletrd |  |-  ( ph -> 0 < N ) | 
						
							| 22 | 12 21 | jca |  |-  ( ph -> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 23 |  | elnnz |  |-  ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ph -> N e. NN ) | 
						
							| 25 | 24 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 26 | 8 | a1i |  |-  ( ph -> D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 27 |  | eqid |  |-  ( Z/nZ ` R ) = ( Z/nZ ` R ) | 
						
							| 28 | 24 1 4 2 5 6 7 27 | hashscontpowcl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 29 | 26 28 | eqeltrd |  |-  ( ph -> D e. NN0 ) | 
						
							| 30 | 29 | nn0red |  |-  ( ph -> D e. RR ) | 
						
							| 31 | 29 | nn0ge0d |  |-  ( ph -> 0 <_ D ) | 
						
							| 32 | 30 31 | resqrtcld |  |-  ( ph -> ( sqrt ` D ) e. RR ) | 
						
							| 33 | 32 | flcld |  |-  ( ph -> ( |_ ` ( sqrt ` D ) ) e. ZZ ) | 
						
							| 34 | 30 31 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` D ) ) | 
						
							| 35 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 36 |  | flge |  |-  ( ( ( sqrt ` D ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` D ) <-> 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) | 
						
							| 37 | 32 35 36 | syl2anc |  |-  ( ph -> ( 0 <_ ( sqrt ` D ) <-> 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) | 
						
							| 38 | 34 37 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( sqrt ` D ) ) ) | 
						
							| 39 | 33 38 | jca |  |-  ( ph -> ( ( |_ ` ( sqrt ` D ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) | 
						
							| 40 |  | elnn0z |  |-  ( ( |_ ` ( sqrt ` D ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` D ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) | 
						
							| 41 | 39 40 | sylibr |  |-  ( ph -> ( |_ ` ( sqrt ` D ) ) e. NN0 ) | 
						
							| 42 | 25 41 | reexpcld |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) e. RR ) | 
						
							| 43 |  | 2re |  |-  2 e. RR | 
						
							| 44 | 43 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 45 |  | 2pos |  |-  0 < 2 | 
						
							| 46 | 45 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 47 | 24 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 48 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 49 | 48 | necomi |  |-  2 =/= 1 | 
						
							| 50 | 49 | a1i |  |-  ( ph -> 2 =/= 1 ) | 
						
							| 51 | 44 46 25 47 50 | relogbcld |  |-  ( ph -> ( 2 logb N ) e. RR ) | 
						
							| 52 | 26 30 | eqeltrrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) | 
						
							| 53 | 31 26 | breqtrd |  |-  ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 54 | 52 53 | resqrtcld |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) | 
						
							| 55 | 51 54 | remulcld |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR ) | 
						
							| 56 | 55 | flcld |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 57 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 58 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 59 | 58 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 60 | 44 | recnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 61 | 13 46 | gtned |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 62 |  | logbid1 |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) | 
						
							| 63 | 60 61 50 62 | syl3anc |  |-  ( ph -> ( 2 logb 2 ) = 1 ) | 
						
							| 64 | 63 | eqcomd |  |-  ( ph -> 1 = ( 2 logb 2 ) ) | 
						
							| 65 |  | 2z |  |-  2 e. ZZ | 
						
							| 66 | 65 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 67 | 44 | leidd |  |-  ( ph -> 2 <_ 2 ) | 
						
							| 68 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 69 | 43 68 | nn0addge1i |  |-  2 <_ ( 2 + 1 ) | 
						
							| 70 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 71 | 69 70 | breqtri |  |-  2 <_ 3 | 
						
							| 72 | 71 | a1i |  |-  ( ph -> 2 <_ 3 ) | 
						
							| 73 | 44 15 16 72 20 | letrd |  |-  ( ph -> 2 <_ N ) | 
						
							| 74 | 66 67 44 46 16 21 73 | logblebd |  |-  ( ph -> ( 2 logb 2 ) <_ ( 2 logb N ) ) | 
						
							| 75 | 64 74 | eqbrtrd |  |-  ( ph -> 1 <_ ( 2 logb N ) ) | 
						
							| 76 | 13 57 51 59 75 | letrd |  |-  ( ph -> 0 <_ ( 2 logb N ) ) | 
						
							| 77 | 52 53 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 78 | 51 54 76 77 | mulge0d |  |-  ( ph -> 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 79 |  | flge |  |-  ( ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <-> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 80 | 55 35 79 | syl2anc |  |-  ( ph -> ( 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <-> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 81 | 78 80 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 82 | 56 81 | jca |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 83 |  | elnn0z |  |-  ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 84 | 82 83 | sylibr |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 85 | 68 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 86 | 84 85 | nn0addcld |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. NN0 ) | 
						
							| 87 | 2 | phicld |  |-  ( ph -> ( phi ` R ) e. NN ) | 
						
							| 88 | 87 | nnred |  |-  ( ph -> ( phi ` R ) e. RR ) | 
						
							| 89 | 87 | nnnn0d |  |-  ( ph -> ( phi ` R ) e. NN0 ) | 
						
							| 90 | 89 | nn0ge0d |  |-  ( ph -> 0 <_ ( phi ` R ) ) | 
						
							| 91 | 88 90 | resqrtcld |  |-  ( ph -> ( sqrt ` ( phi ` R ) ) e. RR ) | 
						
							| 92 | 91 51 | remulcld |  |-  ( ph -> ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 93 | 92 | flcld |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ ) | 
						
							| 94 | 88 90 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` ( phi ` R ) ) ) | 
						
							| 95 | 91 51 94 76 | mulge0d |  |-  ( ph -> 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 96 |  | flge |  |-  ( ( ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 97 | 92 35 96 | syl2anc |  |-  ( ph -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 98 | 95 97 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 99 | 93 98 | jca |  |-  ( ph -> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 100 |  | elnn0z |  |-  ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 101 | 99 100 | sylibr |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 ) | 
						
							| 102 | 86 101 | nn0addcld |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) | 
						
							| 103 | 56 | peano2zd |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. ZZ ) | 
						
							| 104 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 105 | 104 | znegcld |  |-  ( ph -> -u 1 e. ZZ ) | 
						
							| 106 | 103 105 | zaddcld |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) e. ZZ ) | 
						
							| 107 |  | bccl |  |-  ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. NN0 ) | 
						
							| 108 | 102 106 107 | syl2anc |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. NN0 ) | 
						
							| 109 | 108 | nn0red |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. RR ) | 
						
							| 110 | 28 101 | nn0addcld |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) | 
						
							| 111 | 28 | nn0zd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. ZZ ) | 
						
							| 112 | 111 105 | zaddcld |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) e. ZZ ) | 
						
							| 113 |  | bccl |  |-  ( ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) e. ZZ ) -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. NN0 ) | 
						
							| 114 | 110 112 113 | syl2anc |  |-  ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. NN0 ) | 
						
							| 115 | 114 | nn0red |  |-  ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. RR ) | 
						
							| 116 | 54 51 | remulcld |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 117 | 116 | flcld |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ ) | 
						
							| 118 | 54 51 77 76 | mulge0d |  |-  ( ph -> 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) | 
						
							| 119 |  | flge |  |-  ( ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 120 | 116 35 119 | syl2anc |  |-  ( ph -> ( 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 121 | 118 120 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 122 | 117 121 | jca |  |-  ( ph -> ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 123 |  | elnn0z |  |-  ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 124 | 122 123 | sylibr |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. NN0 ) | 
						
							| 125 | 86 124 | nn0addcld |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) | 
						
							| 126 |  | bccl |  |-  ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 127 | 125 56 126 | syl2anc |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 128 | 127 | nn0red |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) | 
						
							| 129 |  | bccl |  |-  ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 130 | 102 56 129 | syl2anc |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 131 | 130 | nn0red |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) | 
						
							| 132 | 44 86 | reexpcld |  |-  ( ph -> ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) e. RR ) | 
						
							| 133 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 134 | 133 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 135 | 134 84 | nn0mulcld |  |-  ( ph -> ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 136 | 135 85 | nn0addcld |  |-  ( ph -> ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) e. NN0 ) | 
						
							| 137 |  | bccl |  |-  ( ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 138 | 136 56 137 | syl2anc |  |-  ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) | 
						
							| 139 | 138 | nn0red |  |-  ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) | 
						
							| 140 | 13 44 46 | ltled |  |-  ( ph -> 0 <_ 2 ) | 
						
							| 141 | 44 140 55 | recxpcld |  |-  ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) | 
						
							| 142 |  | reflcl |  |-  ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) | 
						
							| 143 | 55 142 | syl |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) | 
						
							| 144 | 143 57 | readdcld |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. RR ) | 
						
							| 145 | 44 140 144 | recxpcld |  |-  ( ph -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) e. RR ) | 
						
							| 146 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 147 | 146 | a1i |  |-  ( ph -> 1 <_ 2 ) | 
						
							| 148 | 57 44 16 147 73 | letrd |  |-  ( ph -> 1 <_ N ) | 
						
							| 149 |  | reflcl |  |-  ( ( sqrt ` D ) e. RR -> ( |_ ` ( sqrt ` D ) ) e. RR ) | 
						
							| 150 | 32 149 | syl |  |-  ( ph -> ( |_ ` ( sqrt ` D ) ) e. RR ) | 
						
							| 151 | 26 | fveq2d |  |-  ( ph -> ( sqrt ` D ) = ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 152 | 151 | fveq2d |  |-  ( ph -> ( |_ ` ( sqrt ` D ) ) = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 153 |  | flle |  |-  ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 154 | 54 153 | syl |  |-  ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 155 | 152 154 | eqbrtrd |  |-  ( ph -> ( |_ ` ( sqrt ` D ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 156 | 16 148 150 54 155 | cxplead |  |-  ( ph -> ( N ^c ( |_ ` ( sqrt ` D ) ) ) <_ ( N ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 157 | 16 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 158 | 13 21 | gtned |  |-  ( ph -> N =/= 0 ) | 
						
							| 159 | 157 158 33 | cxpexpzd |  |-  ( ph -> ( N ^c ( |_ ` ( sqrt ` D ) ) ) = ( N ^ ( |_ ` ( sqrt ` D ) ) ) ) | 
						
							| 160 | 61 50 | nelprd |  |-  ( ph -> -. 2 e. { 0 , 1 } ) | 
						
							| 161 | 60 160 | eldifd |  |-  ( ph -> 2 e. ( CC \ { 0 , 1 } ) ) | 
						
							| 162 | 158 | neneqd |  |-  ( ph -> -. N = 0 ) | 
						
							| 163 |  | elsng |  |-  ( N e. NN -> ( N e. { 0 } <-> N = 0 ) ) | 
						
							| 164 | 24 163 | syl |  |-  ( ph -> ( N e. { 0 } <-> N = 0 ) ) | 
						
							| 165 | 162 164 | mtbird |  |-  ( ph -> -. N e. { 0 } ) | 
						
							| 166 | 157 165 | eldifd |  |-  ( ph -> N e. ( CC \ { 0 } ) ) | 
						
							| 167 |  | cxplogb |  |-  ( ( 2 e. ( CC \ { 0 , 1 } ) /\ N e. ( CC \ { 0 } ) ) -> ( 2 ^c ( 2 logb N ) ) = N ) | 
						
							| 168 | 161 166 167 | syl2anc |  |-  ( ph -> ( 2 ^c ( 2 logb N ) ) = N ) | 
						
							| 169 | 168 | eqcomd |  |-  ( ph -> N = ( 2 ^c ( 2 logb N ) ) ) | 
						
							| 170 | 169 | oveq1d |  |-  ( ph -> ( N ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 171 | 156 159 170 | 3brtr3d |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 172 | 44 46 | elrpd |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 173 | 54 | recnd |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. CC ) | 
						
							| 174 |  | cxpmul |  |-  ( ( 2 e. RR+ /\ ( 2 logb N ) e. RR /\ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. CC ) -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 175 | 172 51 173 174 | syl3anc |  |-  ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 176 | 171 175 | breqtrrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 177 |  | fllep1 |  |-  ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) | 
						
							| 178 | 55 177 | syl |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) | 
						
							| 179 | 57 44 147 50 | leneltd |  |-  ( ph -> 1 < 2 ) | 
						
							| 180 | 86 | nn0red |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. RR ) | 
						
							| 181 | 44 179 55 180 | cxpled |  |-  ( ph -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <-> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) ) | 
						
							| 182 | 178 181 | mpbid |  |-  ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 183 | 42 141 145 176 182 | letrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 184 |  | cxpexpz |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. ZZ ) -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 185 | 60 61 103 184 | syl3anc |  |-  ( ph -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 186 | 183 185 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 187 | 51 51 | jca |  |-  ( ph -> ( ( 2 logb N ) e. RR /\ ( 2 logb N ) e. RR ) ) | 
						
							| 188 |  | remulcl |  |-  ( ( ( 2 logb N ) e. RR /\ ( 2 logb N ) e. RR ) -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 189 | 187 188 | syl |  |-  ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 190 |  | reflcl |  |-  ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) e. RR ) | 
						
							| 191 | 189 190 | syl |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) e. RR ) | 
						
							| 192 | 84 | nn0red |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) | 
						
							| 193 | 44 46 15 18 50 | relogbcld |  |-  ( ph -> ( 2 logb 3 ) e. RR ) | 
						
							| 194 | 193 | resqcld |  |-  ( ph -> ( ( 2 logb 3 ) ^ 2 ) e. RR ) | 
						
							| 195 | 51 | recnd |  |-  ( ph -> ( 2 logb N ) e. CC ) | 
						
							| 196 | 195 | sqvald |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) = ( ( 2 logb N ) x. ( 2 logb N ) ) ) | 
						
							| 197 | 196 189 | eqeltrd |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) e. RR ) | 
						
							| 198 |  | 3lexlogpow2ineq2 |  |-  ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 ) | 
						
							| 199 | 198 | simpli |  |-  2 < ( ( 2 logb 3 ) ^ 2 ) | 
						
							| 200 | 199 | a1i |  |-  ( ph -> 2 < ( ( 2 logb 3 ) ^ 2 ) ) | 
						
							| 201 | 44 194 200 | ltled |  |-  ( ph -> 2 <_ ( ( 2 logb 3 ) ^ 2 ) ) | 
						
							| 202 | 15 44 61 | redivcld |  |-  ( ph -> ( 3 / 2 ) e. RR ) | 
						
							| 203 |  | 2rp |  |-  2 e. RR+ | 
						
							| 204 | 203 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 205 | 13 15 18 | ltled |  |-  ( ph -> 0 <_ 3 ) | 
						
							| 206 | 15 204 205 | divge0d |  |-  ( ph -> 0 <_ ( 3 / 2 ) ) | 
						
							| 207 |  | 3lexlogpow2ineq1 |  |-  ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) | 
						
							| 208 | 207 | simpli |  |-  ( 3 / 2 ) < ( 2 logb 3 ) | 
						
							| 209 | 208 | a1i |  |-  ( ph -> ( 3 / 2 ) < ( 2 logb 3 ) ) | 
						
							| 210 | 202 193 209 | ltled |  |-  ( ph -> ( 3 / 2 ) <_ ( 2 logb 3 ) ) | 
						
							| 211 | 13 202 193 206 210 | letrd |  |-  ( ph -> 0 <_ ( 2 logb 3 ) ) | 
						
							| 212 | 66 67 15 18 16 21 20 | logblebd |  |-  ( ph -> ( 2 logb 3 ) <_ ( 2 logb N ) ) | 
						
							| 213 | 193 51 134 211 212 | leexp1ad |  |-  ( ph -> ( ( 2 logb 3 ) ^ 2 ) <_ ( ( 2 logb N ) ^ 2 ) ) | 
						
							| 214 | 44 194 197 201 213 | letrd |  |-  ( ph -> 2 <_ ( ( 2 logb N ) ^ 2 ) ) | 
						
							| 215 | 214 196 | breqtrd |  |-  ( ph -> 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) ) | 
						
							| 216 |  | flge |  |-  ( ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR /\ 2 e. ZZ ) -> ( 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) <-> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 217 | 189 66 216 | syl2anc |  |-  ( ph -> ( 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) <-> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 218 | 215 217 | mpbid |  |-  ( ph -> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) | 
						
							| 219 | 51 51 | remulcld |  |-  ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 220 | 24 1 4 2 5 6 7 27 10 | aks6d1c3 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 221 | 173 | sqvald |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 222 | 28 | nn0cnd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. CC ) | 
						
							| 223 | 222 | msqsqrtd |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 224 | 221 223 | eqtr2d |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) | 
						
							| 225 | 220 224 | breqtrd |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) | 
						
							| 226 | 51 54 76 77 | lt2sqd |  |-  ( ph -> ( ( 2 logb N ) < ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> ( ( 2 logb N ) ^ 2 ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) ) | 
						
							| 227 | 225 226 | mpbird |  |-  ( ph -> ( 2 logb N ) < ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 228 | 51 54 227 | ltled |  |-  ( ph -> ( 2 logb N ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 229 | 51 54 51 76 228 | lemul2ad |  |-  ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 230 |  | flwordi |  |-  ( ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR /\ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ ( ( 2 logb N ) x. ( 2 logb N ) ) <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 231 | 219 55 229 230 | syl3anc |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 232 | 44 191 192 218 231 | letrd |  |-  ( ph -> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 233 | 56 232 | 2ap1caineq |  |-  ( ph -> ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) < ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 234 | 42 132 139 186 233 | lelttrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 235 | 84 | nn0cnd |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. CC ) | 
						
							| 236 | 235 | 2timesd |  |-  ( ph -> ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 237 | 236 | oveq1d |  |-  ( ph -> ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) ) | 
						
							| 238 | 237 | oveq1d |  |-  ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 239 | 234 238 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 240 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 241 | 235 235 240 | addassd |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) | 
						
							| 242 | 86 | nn0cnd |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. CC ) | 
						
							| 243 | 235 242 | addcomd |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 244 | 241 243 | eqtrd |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 245 | 244 | oveq1d |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 246 | 239 245 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 247 | 195 173 | mulcomd |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) | 
						
							| 248 | 247 | fveq2d |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 249 | 248 | oveq2d |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 250 | 249 | oveq1d |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 251 | 246 250 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 252 | 124 | nn0red |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. RR ) | 
						
							| 253 | 101 | nn0red |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. RR ) | 
						
							| 254 | 8 29 | eqeltrrid |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 255 | 254 | nn0red |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) | 
						
							| 256 | 254 | nn0ge0d |  |-  ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 257 | 255 256 | resqrtcld |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) | 
						
							| 258 | 257 51 | remulcld |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 259 | 24 1 4 2 5 6 7 | aks6d1c4 |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) ) | 
						
							| 260 | 52 53 88 90 | sqrtled |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) <-> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( sqrt ` ( phi ` R ) ) ) ) | 
						
							| 261 | 259 260 | mpbid |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( sqrt ` ( phi ` R ) ) ) | 
						
							| 262 | 257 91 51 76 261 | lemul1ad |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 263 |  | flwordi |  |-  ( ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR /\ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 264 | 258 92 262 263 | syl3anc |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 265 | 252 253 144 264 | leadd2dd |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) <_ ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 266 | 125 102 56 265 | bcled |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) <_ ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 267 | 42 128 131 251 266 | ltletrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) | 
						
							| 268 | 235 240 | pncand |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) = ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 269 | 268 | eqcomd |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) ) | 
						
							| 270 | 242 240 | negsubd |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) ) | 
						
							| 271 | 270 | eqcomd |  |-  ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) | 
						
							| 272 | 269 271 | eqtrd |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) | 
						
							| 273 | 272 | oveq2d |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) ) | 
						
							| 274 | 267 273 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) ) | 
						
							| 275 | 2 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 276 | 27 | zncrng |  |-  ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 277 | 275 276 | syl |  |-  ( ph -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 278 |  | crngring |  |-  ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) | 
						
							| 279 | 7 | zrhrhm |  |-  ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) | 
						
							| 280 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 281 |  | eqid |  |-  ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) | 
						
							| 282 | 280 281 | rhmf |  |-  ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 283 | 277 278 279 282 | 4syl |  |-  ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 284 | 283 | ffnd |  |-  ( ph -> L Fn ZZ ) | 
						
							| 285 | 24 1 4 6 | aks6d1c2p1 |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 286 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 287 | 286 | a1i |  |-  ( ph -> NN C_ ZZ ) | 
						
							| 288 | 285 287 | fssd |  |-  ( ph -> E : ( NN0 X. NN0 ) --> ZZ ) | 
						
							| 289 |  | frn |  |-  ( E : ( NN0 X. NN0 ) --> ZZ -> ran E C_ ZZ ) | 
						
							| 290 | 288 289 | syl |  |-  ( ph -> ran E C_ ZZ ) | 
						
							| 291 | 285 | ffnd |  |-  ( ph -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 292 |  | fnima |  |-  ( E Fn ( NN0 X. NN0 ) -> ( E " ( NN0 X. NN0 ) ) = ran E ) | 
						
							| 293 | 291 292 | syl |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) = ran E ) | 
						
							| 294 | 293 | sseq1d |  |-  ( ph -> ( ( E " ( NN0 X. NN0 ) ) C_ ZZ <-> ran E C_ ZZ ) ) | 
						
							| 295 | 290 294 | mpbird |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) | 
						
							| 296 |  | vex |  |-  k e. _V | 
						
							| 297 |  | vex |  |-  l e. _V | 
						
							| 298 | 296 297 | op1std |  |-  ( v = <. k , l >. -> ( 1st ` v ) = k ) | 
						
							| 299 | 298 | oveq2d |  |-  ( v = <. k , l >. -> ( P ^ ( 1st ` v ) ) = ( P ^ k ) ) | 
						
							| 300 | 296 297 | op2ndd |  |-  ( v = <. k , l >. -> ( 2nd ` v ) = l ) | 
						
							| 301 | 300 | oveq2d |  |-  ( v = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 302 | 299 301 | oveq12d |  |-  ( v = <. k , l >. -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 303 | 302 | mpompt |  |-  ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 304 | 303 | eqcomi |  |-  ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) | 
						
							| 305 | 6 304 | eqtri |  |-  E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) | 
						
							| 306 | 305 | a1i |  |-  ( ph -> E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) ) | 
						
							| 307 |  | c0ex |  |-  0 e. _V | 
						
							| 308 | 307 307 | op1std |  |-  ( v = <. 0 , 0 >. -> ( 1st ` v ) = 0 ) | 
						
							| 309 | 308 | adantl |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( 1st ` v ) = 0 ) | 
						
							| 310 | 309 | oveq2d |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( P ^ ( 1st ` v ) ) = ( P ^ 0 ) ) | 
						
							| 311 | 307 307 | op2ndd |  |-  ( v = <. 0 , 0 >. -> ( 2nd ` v ) = 0 ) | 
						
							| 312 | 311 | adantl |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( 2nd ` v ) = 0 ) | 
						
							| 313 | 312 | oveq2d |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ 0 ) ) | 
						
							| 314 | 310 313 | oveq12d |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) ) | 
						
							| 315 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 316 | 1 315 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 317 | 316 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 318 | 317 | exp0d |  |-  ( ph -> ( P ^ 0 ) = 1 ) | 
						
							| 319 | 316 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 320 | 157 317 319 | divcld |  |-  ( ph -> ( N / P ) e. CC ) | 
						
							| 321 | 320 | exp0d |  |-  ( ph -> ( ( N / P ) ^ 0 ) = 1 ) | 
						
							| 322 | 318 321 | oveq12d |  |-  ( ph -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = ( 1 x. 1 ) ) | 
						
							| 323 | 240 | mulridd |  |-  ( ph -> ( 1 x. 1 ) = 1 ) | 
						
							| 324 | 322 323 | eqtrd |  |-  ( ph -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = 1 ) | 
						
							| 325 | 324 | adantr |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = 1 ) | 
						
							| 326 | 314 325 | eqtrd |  |-  ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = 1 ) | 
						
							| 327 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 328 | 327 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 329 | 328 328 | opelxpd |  |-  ( ph -> <. 0 , 0 >. e. ( NN0 X. NN0 ) ) | 
						
							| 330 |  | 1nn |  |-  1 e. NN | 
						
							| 331 | 330 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 332 | 306 326 329 331 | fvmptd |  |-  ( ph -> ( E ` <. 0 , 0 >. ) = 1 ) | 
						
							| 333 |  | ssidd |  |-  ( ph -> ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) ) | 
						
							| 334 |  | fnfvima |  |-  ( ( E Fn ( NN0 X. NN0 ) /\ ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) /\ <. 0 , 0 >. e. ( NN0 X. NN0 ) ) -> ( E ` <. 0 , 0 >. ) e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 335 | 291 333 329 334 | syl3anc |  |-  ( ph -> ( E ` <. 0 , 0 >. ) e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 336 | 332 335 | eqeltrrd |  |-  ( ph -> 1 e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 337 |  | fnfvima |  |-  ( ( L Fn ZZ /\ ( E " ( NN0 X. NN0 ) ) C_ ZZ /\ 1 e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` 1 ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 338 | 284 295 336 337 | syl3anc |  |-  ( ph -> ( L ` 1 ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 339 | 7 | a1i |  |-  ( ph -> L = ( ZRHom ` ( Z/nZ ` R ) ) ) | 
						
							| 340 |  | fvexd |  |-  ( ph -> ( ZRHom ` ( Z/nZ ` R ) ) e. _V ) | 
						
							| 341 | 339 340 | eqeltrd |  |-  ( ph -> L e. _V ) | 
						
							| 342 | 341 | imaexd |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) | 
						
							| 343 | 338 342 | hashelne0d |  |-  ( ph -> -. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = 0 ) | 
						
							| 344 | 343 | neqned |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) | 
						
							| 345 | 28 344 | jca |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) ) | 
						
							| 346 |  | elnnne0 |  |-  ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN <-> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) ) | 
						
							| 347 | 345 346 | sylibr |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN ) | 
						
							| 348 | 347 | nnrpd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR+ ) | 
						
							| 349 | 348 | rpsqrtcld |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR+ ) | 
						
							| 350 | 51 54 349 227 | ltmul1dd |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 351 | 52 53 52 53 | sqrtmuld |  |-  ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 352 | 351 | eqcomd |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 353 | 350 352 | breqtrd |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 354 | 351 223 | eqtrd |  |-  ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 355 | 353 354 | breqtrd |  |-  ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 356 |  | fllt |  |-  ( ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. ZZ ) -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 357 | 55 111 356 | syl2anc |  |-  ( ph -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 358 | 355 357 | mpbid |  |-  ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 359 | 56 111 | zltp1led |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 360 | 358 359 | mpbid |  |-  ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 361 | 57 | renegcld |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 362 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 363 | 362 | a1i |  |-  ( ph -> -u 1 = ( 0 - 1 ) ) | 
						
							| 364 | 13 | lem1d |  |-  ( ph -> ( 0 - 1 ) <_ 0 ) | 
						
							| 365 | 363 364 | eqbrtrd |  |-  ( ph -> -u 1 <_ 0 ) | 
						
							| 366 | 361 13 253 365 98 | letrd |  |-  ( ph -> -u 1 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 367 | 86 28 101 105 360 366 | bcle2d |  |-  ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) <_ ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) ) | 
						
							| 368 | 42 109 115 274 367 | ltletrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) ) | 
						
							| 369 | 222 240 | negsubd |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) = ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) | 
						
							| 370 | 369 | oveq2d |  |-  ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) = ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) | 
						
							| 371 | 368 370 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) | 
						
							| 372 | 9 | eqcomi |  |-  ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) = A | 
						
							| 373 | 372 | a1i |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) = A ) | 
						
							| 374 | 373 | oveq2d |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) = ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) ) | 
						
							| 375 | 374 | oveq1d |  |-  ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) = ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) | 
						
							| 376 | 371 375 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) | 
						
							| 377 | 26 | eqcomd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = D ) | 
						
							| 378 | 377 | oveq1d |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) = ( D + A ) ) | 
						
							| 379 | 377 | oveq1d |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) = ( D - 1 ) ) | 
						
							| 380 | 378 379 | oveq12d |  |-  ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) = ( ( D + A ) _C ( D - 1 ) ) ) | 
						
							| 381 | 376 380 | breqtrd |  |-  ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( D + A ) _C ( D - 1 ) ) ) |