Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7lem1.1 |
|- ( ph -> P e. Prime ) |
2 |
|
aks6d1c7lem1.2 |
|- ( ph -> R e. NN ) |
3 |
|
aks6d1c7lem1.3 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
4 |
|
aks6d1c7lem1.4 |
|- ( ph -> P || N ) |
5 |
|
aks6d1c7lem1.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
6 |
|
aks6d1c7lem1.6 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
7 |
|
aks6d1c7lem1.7 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
8 |
|
aks6d1c7lem1.8 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
9 |
|
aks6d1c7lem1.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
10 |
|
aks6d1c7lem1.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
11 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
12 |
3 11
|
syl |
|- ( ph -> N e. ZZ ) |
13 |
|
0red |
|- ( ph -> 0 e. RR ) |
14 |
|
3re |
|- 3 e. RR |
15 |
14
|
a1i |
|- ( ph -> 3 e. RR ) |
16 |
12
|
zred |
|- ( ph -> N e. RR ) |
17 |
|
3pos |
|- 0 < 3 |
18 |
17
|
a1i |
|- ( ph -> 0 < 3 ) |
19 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
20 |
3 19
|
syl |
|- ( ph -> 3 <_ N ) |
21 |
13 15 16 18 20
|
ltletrd |
|- ( ph -> 0 < N ) |
22 |
12 21
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
23 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
24 |
22 23
|
sylibr |
|- ( ph -> N e. NN ) |
25 |
24
|
nnred |
|- ( ph -> N e. RR ) |
26 |
8
|
a1i |
|- ( ph -> D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
27 |
|
eqid |
|- ( Z/nZ ` R ) = ( Z/nZ ` R ) |
28 |
24 1 4 2 5 6 7 27
|
hashscontpowcl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
29 |
26 28
|
eqeltrd |
|- ( ph -> D e. NN0 ) |
30 |
29
|
nn0red |
|- ( ph -> D e. RR ) |
31 |
29
|
nn0ge0d |
|- ( ph -> 0 <_ D ) |
32 |
30 31
|
resqrtcld |
|- ( ph -> ( sqrt ` D ) e. RR ) |
33 |
32
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` D ) ) e. ZZ ) |
34 |
30 31
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` D ) ) |
35 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
36 |
|
flge |
|- ( ( ( sqrt ` D ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` D ) <-> 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) |
37 |
32 35 36
|
syl2anc |
|- ( ph -> ( 0 <_ ( sqrt ` D ) <-> 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) |
38 |
34 37
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( sqrt ` D ) ) ) |
39 |
33 38
|
jca |
|- ( ph -> ( ( |_ ` ( sqrt ` D ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) |
40 |
|
elnn0z |
|- ( ( |_ ` ( sqrt ` D ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` D ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` D ) ) ) ) |
41 |
39 40
|
sylibr |
|- ( ph -> ( |_ ` ( sqrt ` D ) ) e. NN0 ) |
42 |
25 41
|
reexpcld |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) e. RR ) |
43 |
|
2re |
|- 2 e. RR |
44 |
43
|
a1i |
|- ( ph -> 2 e. RR ) |
45 |
|
2pos |
|- 0 < 2 |
46 |
45
|
a1i |
|- ( ph -> 0 < 2 ) |
47 |
24
|
nngt0d |
|- ( ph -> 0 < N ) |
48 |
|
1ne2 |
|- 1 =/= 2 |
49 |
48
|
necomi |
|- 2 =/= 1 |
50 |
49
|
a1i |
|- ( ph -> 2 =/= 1 ) |
51 |
44 46 25 47 50
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
52 |
26 30
|
eqeltrrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
53 |
31 26
|
breqtrd |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
54 |
52 53
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
55 |
51 54
|
remulcld |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR ) |
56 |
55
|
flcld |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) |
57 |
|
1red |
|- ( ph -> 1 e. RR ) |
58 |
|
0le1 |
|- 0 <_ 1 |
59 |
58
|
a1i |
|- ( ph -> 0 <_ 1 ) |
60 |
44
|
recnd |
|- ( ph -> 2 e. CC ) |
61 |
13 46
|
gtned |
|- ( ph -> 2 =/= 0 ) |
62 |
|
logbid1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) |
63 |
60 61 50 62
|
syl3anc |
|- ( ph -> ( 2 logb 2 ) = 1 ) |
64 |
63
|
eqcomd |
|- ( ph -> 1 = ( 2 logb 2 ) ) |
65 |
|
2z |
|- 2 e. ZZ |
66 |
65
|
a1i |
|- ( ph -> 2 e. ZZ ) |
67 |
44
|
leidd |
|- ( ph -> 2 <_ 2 ) |
68 |
|
1nn0 |
|- 1 e. NN0 |
69 |
43 68
|
nn0addge1i |
|- 2 <_ ( 2 + 1 ) |
70 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
71 |
69 70
|
breqtri |
|- 2 <_ 3 |
72 |
71
|
a1i |
|- ( ph -> 2 <_ 3 ) |
73 |
44 15 16 72 20
|
letrd |
|- ( ph -> 2 <_ N ) |
74 |
66 67 44 46 16 21 73
|
logblebd |
|- ( ph -> ( 2 logb 2 ) <_ ( 2 logb N ) ) |
75 |
64 74
|
eqbrtrd |
|- ( ph -> 1 <_ ( 2 logb N ) ) |
76 |
13 57 51 59 75
|
letrd |
|- ( ph -> 0 <_ ( 2 logb N ) ) |
77 |
52 53
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
78 |
51 54 76 77
|
mulge0d |
|- ( ph -> 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
79 |
|
flge |
|- ( ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <-> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
80 |
55 35 79
|
syl2anc |
|- ( ph -> ( 0 <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <-> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
81 |
78 80
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
82 |
56 81
|
jca |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
83 |
|
elnn0z |
|- ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
84 |
82 83
|
sylibr |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. NN0 ) |
85 |
68
|
a1i |
|- ( ph -> 1 e. NN0 ) |
86 |
84 85
|
nn0addcld |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. NN0 ) |
87 |
2
|
phicld |
|- ( ph -> ( phi ` R ) e. NN ) |
88 |
87
|
nnred |
|- ( ph -> ( phi ` R ) e. RR ) |
89 |
87
|
nnnn0d |
|- ( ph -> ( phi ` R ) e. NN0 ) |
90 |
89
|
nn0ge0d |
|- ( ph -> 0 <_ ( phi ` R ) ) |
91 |
88 90
|
resqrtcld |
|- ( ph -> ( sqrt ` ( phi ` R ) ) e. RR ) |
92 |
91 51
|
remulcld |
|- ( ph -> ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR ) |
93 |
92
|
flcld |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ ) |
94 |
88 90
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( phi ` R ) ) ) |
95 |
91 51 94 76
|
mulge0d |
|- ( ph -> 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
96 |
|
flge |
|- ( ( ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
97 |
92 35 96
|
syl2anc |
|- ( ph -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
98 |
95 97
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
99 |
93 98
|
jca |
|- ( ph -> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
100 |
|
elnn0z |
|- ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
101 |
99 100
|
sylibr |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 ) |
102 |
86 101
|
nn0addcld |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) |
103 |
56
|
peano2zd |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. ZZ ) |
104 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
105 |
104
|
znegcld |
|- ( ph -> -u 1 e. ZZ ) |
106 |
103 105
|
zaddcld |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) e. ZZ ) |
107 |
|
bccl |
|- ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. NN0 ) |
108 |
102 106 107
|
syl2anc |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. NN0 ) |
109 |
108
|
nn0red |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) e. RR ) |
110 |
28 101
|
nn0addcld |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) |
111 |
28
|
nn0zd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. ZZ ) |
112 |
111 105
|
zaddcld |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) e. ZZ ) |
113 |
|
bccl |
|- ( ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) e. ZZ ) -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. NN0 ) |
114 |
110 112 113
|
syl2anc |
|- ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. NN0 ) |
115 |
114
|
nn0red |
|- ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) e. RR ) |
116 |
54 51
|
remulcld |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR ) |
117 |
116
|
flcld |
|- ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ ) |
118 |
54 51 77 76
|
mulge0d |
|- ( ph -> 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) |
119 |
|
flge |
|- ( ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) |
120 |
116 35 119
|
syl2anc |
|- ( ph -> ( 0 <_ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) |
121 |
118 120
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) |
122 |
117 121
|
jca |
|- ( ph -> ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) |
123 |
|
elnn0z |
|- ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) |
124 |
122 123
|
sylibr |
|- ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. NN0 ) |
125 |
86 124
|
nn0addcld |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) e. NN0 ) |
126 |
|
bccl |
|- ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
127 |
125 56 126
|
syl2anc |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
128 |
127
|
nn0red |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) |
129 |
|
bccl |
|- ( ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
130 |
102 56 129
|
syl2anc |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
131 |
130
|
nn0red |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) |
132 |
44 86
|
reexpcld |
|- ( ph -> ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) e. RR ) |
133 |
|
2nn0 |
|- 2 e. NN0 |
134 |
133
|
a1i |
|- ( ph -> 2 e. NN0 ) |
135 |
134 84
|
nn0mulcld |
|- ( ph -> ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
136 |
135 85
|
nn0addcld |
|- ( ph -> ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) e. NN0 ) |
137 |
|
bccl |
|- ( ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) e. NN0 /\ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
138 |
136 56 137
|
syl2anc |
|- ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. NN0 ) |
139 |
138
|
nn0red |
|- ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) e. RR ) |
140 |
13 44 46
|
ltled |
|- ( ph -> 0 <_ 2 ) |
141 |
44 140 55
|
recxpcld |
|- ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) |
142 |
|
reflcl |
|- ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) |
143 |
55 142
|
syl |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) |
144 |
143 57
|
readdcld |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. RR ) |
145 |
44 140 144
|
recxpcld |
|- ( ph -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) e. RR ) |
146 |
|
1le2 |
|- 1 <_ 2 |
147 |
146
|
a1i |
|- ( ph -> 1 <_ 2 ) |
148 |
57 44 16 147 73
|
letrd |
|- ( ph -> 1 <_ N ) |
149 |
|
reflcl |
|- ( ( sqrt ` D ) e. RR -> ( |_ ` ( sqrt ` D ) ) e. RR ) |
150 |
32 149
|
syl |
|- ( ph -> ( |_ ` ( sqrt ` D ) ) e. RR ) |
151 |
26
|
fveq2d |
|- ( ph -> ( sqrt ` D ) = ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
152 |
151
|
fveq2d |
|- ( ph -> ( |_ ` ( sqrt ` D ) ) = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
153 |
|
flle |
|- ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
154 |
54 153
|
syl |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
155 |
152 154
|
eqbrtrd |
|- ( ph -> ( |_ ` ( sqrt ` D ) ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
156 |
16 148 150 54 155
|
cxplead |
|- ( ph -> ( N ^c ( |_ ` ( sqrt ` D ) ) ) <_ ( N ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
157 |
16
|
recnd |
|- ( ph -> N e. CC ) |
158 |
13 21
|
gtned |
|- ( ph -> N =/= 0 ) |
159 |
157 158 33
|
cxpexpzd |
|- ( ph -> ( N ^c ( |_ ` ( sqrt ` D ) ) ) = ( N ^ ( |_ ` ( sqrt ` D ) ) ) ) |
160 |
61 50
|
nelprd |
|- ( ph -> -. 2 e. { 0 , 1 } ) |
161 |
60 160
|
eldifd |
|- ( ph -> 2 e. ( CC \ { 0 , 1 } ) ) |
162 |
158
|
neneqd |
|- ( ph -> -. N = 0 ) |
163 |
|
elsng |
|- ( N e. NN -> ( N e. { 0 } <-> N = 0 ) ) |
164 |
24 163
|
syl |
|- ( ph -> ( N e. { 0 } <-> N = 0 ) ) |
165 |
162 164
|
mtbird |
|- ( ph -> -. N e. { 0 } ) |
166 |
157 165
|
eldifd |
|- ( ph -> N e. ( CC \ { 0 } ) ) |
167 |
|
cxplogb |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ N e. ( CC \ { 0 } ) ) -> ( 2 ^c ( 2 logb N ) ) = N ) |
168 |
161 166 167
|
syl2anc |
|- ( ph -> ( 2 ^c ( 2 logb N ) ) = N ) |
169 |
168
|
eqcomd |
|- ( ph -> N = ( 2 ^c ( 2 logb N ) ) ) |
170 |
169
|
oveq1d |
|- ( ph -> ( N ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
171 |
156 159 170
|
3brtr3d |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
172 |
44 46
|
elrpd |
|- ( ph -> 2 e. RR+ ) |
173 |
54
|
recnd |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. CC ) |
174 |
|
cxpmul |
|- ( ( 2 e. RR+ /\ ( 2 logb N ) e. RR /\ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. CC ) -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
175 |
172 51 173 174
|
syl3anc |
|- ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( 2 ^c ( 2 logb N ) ) ^c ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
176 |
171 175
|
breqtrrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
177 |
|
fllep1 |
|- ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) |
178 |
55 177
|
syl |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) |
179 |
57 44 147 50
|
leneltd |
|- ( ph -> 1 < 2 ) |
180 |
86
|
nn0red |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. RR ) |
181 |
44 179 55 180
|
cxpled |
|- ( ph -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) <_ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <-> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) ) |
182 |
178 181
|
mpbid |
|- ( ph -> ( 2 ^c ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
183 |
42 141 145 176 182
|
letrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
184 |
|
cxpexpz |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. ZZ ) -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
185 |
60 61 103 184
|
syl3anc |
|- ( ph -> ( 2 ^c ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
186 |
183 185
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) <_ ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
187 |
51 51
|
jca |
|- ( ph -> ( ( 2 logb N ) e. RR /\ ( 2 logb N ) e. RR ) ) |
188 |
|
remulcl |
|- ( ( ( 2 logb N ) e. RR /\ ( 2 logb N ) e. RR ) -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) |
189 |
187 188
|
syl |
|- ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) |
190 |
|
reflcl |
|- ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) e. RR ) |
191 |
189 190
|
syl |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) e. RR ) |
192 |
84
|
nn0red |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. RR ) |
193 |
44 46 15 18 50
|
relogbcld |
|- ( ph -> ( 2 logb 3 ) e. RR ) |
194 |
193
|
resqcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) e. RR ) |
195 |
51
|
recnd |
|- ( ph -> ( 2 logb N ) e. CC ) |
196 |
195
|
sqvald |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) = ( ( 2 logb N ) x. ( 2 logb N ) ) ) |
197 |
196 189
|
eqeltrd |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) e. RR ) |
198 |
|
3lexlogpow2ineq2 |
|- ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 ) |
199 |
198
|
simpli |
|- 2 < ( ( 2 logb 3 ) ^ 2 ) |
200 |
199
|
a1i |
|- ( ph -> 2 < ( ( 2 logb 3 ) ^ 2 ) ) |
201 |
44 194 200
|
ltled |
|- ( ph -> 2 <_ ( ( 2 logb 3 ) ^ 2 ) ) |
202 |
15 44 61
|
redivcld |
|- ( ph -> ( 3 / 2 ) e. RR ) |
203 |
|
2rp |
|- 2 e. RR+ |
204 |
203
|
a1i |
|- ( ph -> 2 e. RR+ ) |
205 |
13 15 18
|
ltled |
|- ( ph -> 0 <_ 3 ) |
206 |
15 204 205
|
divge0d |
|- ( ph -> 0 <_ ( 3 / 2 ) ) |
207 |
|
3lexlogpow2ineq1 |
|- ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) |
208 |
207
|
simpli |
|- ( 3 / 2 ) < ( 2 logb 3 ) |
209 |
208
|
a1i |
|- ( ph -> ( 3 / 2 ) < ( 2 logb 3 ) ) |
210 |
202 193 209
|
ltled |
|- ( ph -> ( 3 / 2 ) <_ ( 2 logb 3 ) ) |
211 |
13 202 193 206 210
|
letrd |
|- ( ph -> 0 <_ ( 2 logb 3 ) ) |
212 |
66 67 15 18 16 21 20
|
logblebd |
|- ( ph -> ( 2 logb 3 ) <_ ( 2 logb N ) ) |
213 |
193 51 134 211 212
|
leexp1ad |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) <_ ( ( 2 logb N ) ^ 2 ) ) |
214 |
44 194 197 201 213
|
letrd |
|- ( ph -> 2 <_ ( ( 2 logb N ) ^ 2 ) ) |
215 |
214 196
|
breqtrd |
|- ( ph -> 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) ) |
216 |
|
flge |
|- ( ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR /\ 2 e. ZZ ) -> ( 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) <-> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) ) |
217 |
189 66 216
|
syl2anc |
|- ( ph -> ( 2 <_ ( ( 2 logb N ) x. ( 2 logb N ) ) <-> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) ) |
218 |
215 217
|
mpbid |
|- ( ph -> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) ) |
219 |
51 51
|
remulcld |
|- ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR ) |
220 |
24 1 4 2 5 6 7 27 10
|
aks6d1c3 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
221 |
173
|
sqvald |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
222 |
28
|
nn0cnd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. CC ) |
223 |
222
|
msqsqrtd |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
224 |
221 223
|
eqtr2d |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) |
225 |
220 224
|
breqtrd |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) |
226 |
51 54 76 77
|
lt2sqd |
|- ( ph -> ( ( 2 logb N ) < ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> ( ( 2 logb N ) ^ 2 ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ^ 2 ) ) ) |
227 |
225 226
|
mpbird |
|- ( ph -> ( 2 logb N ) < ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
228 |
51 54 227
|
ltled |
|- ( ph -> ( 2 logb N ) <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
229 |
51 54 51 76 228
|
lemul2ad |
|- ( ph -> ( ( 2 logb N ) x. ( 2 logb N ) ) <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
230 |
|
flwordi |
|- ( ( ( ( 2 logb N ) x. ( 2 logb N ) ) e. RR /\ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ ( ( 2 logb N ) x. ( 2 logb N ) ) <_ ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
231 |
219 55 229 230
|
syl3anc |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
232 |
44 191 192 218 231
|
letrd |
|- ( ph -> 2 <_ ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
233 |
56 232
|
2ap1caineq |
|- ( ph -> ( 2 ^ ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) < ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
234 |
42 132 139 186 233
|
lelttrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
235 |
84
|
nn0cnd |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) e. CC ) |
236 |
235
|
2timesd |
|- ( ph -> ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
237 |
236
|
oveq1d |
|- ( ph -> ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) ) |
238 |
237
|
oveq1d |
|- ( ph -> ( ( ( 2 x. ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
239 |
234 238
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
240 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
241 |
235 235 240
|
addassd |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) ) |
242 |
86
|
nn0cnd |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) e. CC ) |
243 |
235 242
|
addcomd |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
244 |
241 243
|
eqtrd |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
245 |
244
|
oveq1d |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) + 1 ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
246 |
239 245
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
247 |
195 173
|
mulcomd |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) |
248 |
247
|
fveq2d |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) |
249 |
248
|
oveq2d |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) ) |
250 |
249
|
oveq1d |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
251 |
246 250
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
252 |
124
|
nn0red |
|- ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) e. RR ) |
253 |
101
|
nn0red |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. RR ) |
254 |
8 29
|
eqeltrrid |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
255 |
254
|
nn0red |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
256 |
254
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
257 |
255 256
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
258 |
257 51
|
remulcld |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR ) |
259 |
24 1 4 2 5 6 7
|
aks6d1c4 |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) ) |
260 |
52 53 88 90
|
sqrtled |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) <-> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( sqrt ` ( phi ` R ) ) ) ) |
261 |
259 260
|
mpbid |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <_ ( sqrt ` ( phi ` R ) ) ) |
262 |
257 91 51 76 261
|
lemul1ad |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
263 |
|
flwordi |
|- ( ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) e. RR /\ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
264 |
258 92 262 263
|
syl3anc |
|- ( ph -> ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
265 |
252 253 144 264
|
leadd2dd |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) <_ ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
266 |
125 102 56 265
|
bcled |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) <_ ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
267 |
42 128 131 251 266
|
ltletrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) ) |
268 |
235 240
|
pncand |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) = ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
269 |
268
|
eqcomd |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) ) |
270 |
242 240
|
negsubd |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) ) |
271 |
270
|
eqcomd |
|- ( ph -> ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) - 1 ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) |
272 |
269 271
|
eqtrd |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) = ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) |
273 |
272
|
oveq2d |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) = ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) ) |
274 |
267 273
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) ) |
275 |
2
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
276 |
27
|
zncrng |
|- ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) |
277 |
275 276
|
syl |
|- ( ph -> ( Z/nZ ` R ) e. CRing ) |
278 |
|
crngring |
|- ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) |
279 |
7
|
zrhrhm |
|- ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) |
280 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
281 |
|
eqid |
|- ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) |
282 |
280 281
|
rhmf |
|- ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
283 |
277 278 279 282
|
4syl |
|- ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
284 |
283
|
ffnd |
|- ( ph -> L Fn ZZ ) |
285 |
24 1 4 6
|
aks6d1c2p1 |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |
286 |
|
nnssz |
|- NN C_ ZZ |
287 |
286
|
a1i |
|- ( ph -> NN C_ ZZ ) |
288 |
285 287
|
fssd |
|- ( ph -> E : ( NN0 X. NN0 ) --> ZZ ) |
289 |
|
frn |
|- ( E : ( NN0 X. NN0 ) --> ZZ -> ran E C_ ZZ ) |
290 |
288 289
|
syl |
|- ( ph -> ran E C_ ZZ ) |
291 |
285
|
ffnd |
|- ( ph -> E Fn ( NN0 X. NN0 ) ) |
292 |
|
fnima |
|- ( E Fn ( NN0 X. NN0 ) -> ( E " ( NN0 X. NN0 ) ) = ran E ) |
293 |
291 292
|
syl |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) = ran E ) |
294 |
293
|
sseq1d |
|- ( ph -> ( ( E " ( NN0 X. NN0 ) ) C_ ZZ <-> ran E C_ ZZ ) ) |
295 |
290 294
|
mpbird |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) |
296 |
|
vex |
|- k e. _V |
297 |
|
vex |
|- l e. _V |
298 |
296 297
|
op1std |
|- ( v = <. k , l >. -> ( 1st ` v ) = k ) |
299 |
298
|
oveq2d |
|- ( v = <. k , l >. -> ( P ^ ( 1st ` v ) ) = ( P ^ k ) ) |
300 |
296 297
|
op2ndd |
|- ( v = <. k , l >. -> ( 2nd ` v ) = l ) |
301 |
300
|
oveq2d |
|- ( v = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ l ) ) |
302 |
299 301
|
oveq12d |
|- ( v = <. k , l >. -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
303 |
302
|
mpompt |
|- ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
304 |
303
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) |
305 |
6 304
|
eqtri |
|- E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) |
306 |
305
|
a1i |
|- ( ph -> E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) ) |
307 |
|
c0ex |
|- 0 e. _V |
308 |
307 307
|
op1std |
|- ( v = <. 0 , 0 >. -> ( 1st ` v ) = 0 ) |
309 |
308
|
adantl |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( 1st ` v ) = 0 ) |
310 |
309
|
oveq2d |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( P ^ ( 1st ` v ) ) = ( P ^ 0 ) ) |
311 |
307 307
|
op2ndd |
|- ( v = <. 0 , 0 >. -> ( 2nd ` v ) = 0 ) |
312 |
311
|
adantl |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( 2nd ` v ) = 0 ) |
313 |
312
|
oveq2d |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ 0 ) ) |
314 |
310 313
|
oveq12d |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) ) |
315 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
316 |
1 315
|
syl |
|- ( ph -> P e. NN ) |
317 |
316
|
nncnd |
|- ( ph -> P e. CC ) |
318 |
317
|
exp0d |
|- ( ph -> ( P ^ 0 ) = 1 ) |
319 |
316
|
nnne0d |
|- ( ph -> P =/= 0 ) |
320 |
157 317 319
|
divcld |
|- ( ph -> ( N / P ) e. CC ) |
321 |
320
|
exp0d |
|- ( ph -> ( ( N / P ) ^ 0 ) = 1 ) |
322 |
318 321
|
oveq12d |
|- ( ph -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = ( 1 x. 1 ) ) |
323 |
240
|
mulridd |
|- ( ph -> ( 1 x. 1 ) = 1 ) |
324 |
322 323
|
eqtrd |
|- ( ph -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = 1 ) |
325 |
324
|
adantr |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ 0 ) x. ( ( N / P ) ^ 0 ) ) = 1 ) |
326 |
314 325
|
eqtrd |
|- ( ( ph /\ v = <. 0 , 0 >. ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = 1 ) |
327 |
|
0nn0 |
|- 0 e. NN0 |
328 |
327
|
a1i |
|- ( ph -> 0 e. NN0 ) |
329 |
328 328
|
opelxpd |
|- ( ph -> <. 0 , 0 >. e. ( NN0 X. NN0 ) ) |
330 |
|
1nn |
|- 1 e. NN |
331 |
330
|
a1i |
|- ( ph -> 1 e. NN ) |
332 |
306 326 329 331
|
fvmptd |
|- ( ph -> ( E ` <. 0 , 0 >. ) = 1 ) |
333 |
|
ssidd |
|- ( ph -> ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) ) |
334 |
|
fnfvima |
|- ( ( E Fn ( NN0 X. NN0 ) /\ ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) /\ <. 0 , 0 >. e. ( NN0 X. NN0 ) ) -> ( E ` <. 0 , 0 >. ) e. ( E " ( NN0 X. NN0 ) ) ) |
335 |
291 333 329 334
|
syl3anc |
|- ( ph -> ( E ` <. 0 , 0 >. ) e. ( E " ( NN0 X. NN0 ) ) ) |
336 |
332 335
|
eqeltrrd |
|- ( ph -> 1 e. ( E " ( NN0 X. NN0 ) ) ) |
337 |
|
fnfvima |
|- ( ( L Fn ZZ /\ ( E " ( NN0 X. NN0 ) ) C_ ZZ /\ 1 e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` 1 ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
338 |
284 295 336 337
|
syl3anc |
|- ( ph -> ( L ` 1 ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
339 |
7
|
a1i |
|- ( ph -> L = ( ZRHom ` ( Z/nZ ` R ) ) ) |
340 |
|
fvexd |
|- ( ph -> ( ZRHom ` ( Z/nZ ` R ) ) e. _V ) |
341 |
339 340
|
eqeltrd |
|- ( ph -> L e. _V ) |
342 |
341
|
imaexd |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) |
343 |
338 342
|
hashelne0d |
|- ( ph -> -. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = 0 ) |
344 |
343
|
neqned |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) |
345 |
28 344
|
jca |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) ) |
346 |
|
elnnne0 |
|- ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN <-> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) =/= 0 ) ) |
347 |
345 346
|
sylibr |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN ) |
348 |
347
|
nnrpd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR+ ) |
349 |
348
|
rpsqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR+ ) |
350 |
51 54 349 227
|
ltmul1dd |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
351 |
52 53 52 53
|
sqrtmuld |
|- ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
352 |
351
|
eqcomd |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
353 |
350 352
|
breqtrd |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
354 |
351 223
|
eqtrd |
|- ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
355 |
353 354
|
breqtrd |
|- ( ph -> ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
356 |
|
fllt |
|- ( ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. RR /\ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. ZZ ) -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
357 |
55 111 356
|
syl2anc |
|- ( ph -> ( ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
358 |
355 357
|
mpbid |
|- ( ph -> ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
359 |
56 111
|
zltp1led |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <-> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
360 |
358 359
|
mpbid |
|- ( ph -> ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
361 |
57
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
362 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
363 |
362
|
a1i |
|- ( ph -> -u 1 = ( 0 - 1 ) ) |
364 |
13
|
lem1d |
|- ( ph -> ( 0 - 1 ) <_ 0 ) |
365 |
363 364
|
eqbrtrd |
|- ( ph -> -u 1 <_ 0 ) |
366 |
361 13 253 365 98
|
letrd |
|- ( ph -> -u 1 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
367 |
86 28 101 105 360 366
|
bcle2d |
|- ( ph -> ( ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( ( |_ ` ( ( 2 logb N ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) + 1 ) + -u 1 ) ) <_ ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) ) |
368 |
42 109 115 274 367
|
ltletrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) ) |
369 |
222 240
|
negsubd |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) = ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) |
370 |
369
|
oveq2d |
|- ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + -u 1 ) ) = ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) |
371 |
368 370
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) |
372 |
9
|
eqcomi |
|- ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) = A |
373 |
372
|
a1i |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) = A ) |
374 |
373
|
oveq2d |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) = ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) ) |
375 |
374
|
oveq1d |
|- ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) = ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) |
376 |
371 375
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) ) |
377 |
26
|
eqcomd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = D ) |
378 |
377
|
oveq1d |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) = ( D + A ) ) |
379 |
377
|
oveq1d |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) = ( D - 1 ) ) |
380 |
378 379
|
oveq12d |
|- ( ph -> ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) + A ) _C ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) - 1 ) ) = ( ( D + A ) _C ( D - 1 ) ) ) |
381 |
376 380
|
breqtrd |
|- ( ph -> ( N ^ ( |_ ` ( sqrt ` D ) ) ) < ( ( D + A ) _C ( D - 1 ) ) ) |