Metamath Proof Explorer


Theorem 3lexlogpow2ineq2

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow2ineq2
|- ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 2re
 |-  2 e. RR
3 2 a1i
 |-  ( T. -> 2 e. RR )
4 3re
 |-  3 e. RR
5 4 a1i
 |-  ( T. -> 3 e. RR )
6 5 rehalfcld
 |-  ( T. -> ( 3 / 2 ) e. RR )
7 6 resqcld
 |-  ( T. -> ( ( 3 / 2 ) ^ 2 ) e. RR )
8 2pos
 |-  0 < 2
9 8 a1i
 |-  ( T. -> 0 < 2 )
10 3pos
 |-  0 < 3
11 10 a1i
 |-  ( T. -> 0 < 3 )
12 1red
 |-  ( T. -> 1 e. RR )
13 1lt2
 |-  1 < 2
14 13 a1i
 |-  ( T. -> 1 < 2 )
15 12 14 ltned
 |-  ( T. -> 1 =/= 2 )
16 15 necomd
 |-  ( T. -> 2 =/= 1 )
17 3 9 5 11 16 relogbcld
 |-  ( T. -> ( 2 logb 3 ) e. RR )
18 17 resqcld
 |-  ( T. -> ( ( 2 logb 3 ) ^ 2 ) e. RR )
19 2cnd
 |-  ( T. -> 2 e. CC )
20 4cn
 |-  4 e. CC
21 20 a1i
 |-  ( T. -> 4 e. CC )
22 0red
 |-  ( T. -> 0 e. RR )
23 4pos
 |-  0 < 4
24 23 a1i
 |-  ( T. -> 0 < 4 )
25 22 24 ltned
 |-  ( T. -> 0 =/= 4 )
26 25 necomd
 |-  ( T. -> 4 =/= 0 )
27 19 21 26 divcan4d
 |-  ( T. -> ( ( 2 x. 4 ) / 4 ) = 2 )
28 27 eqcomd
 |-  ( T. -> 2 = ( ( 2 x. 4 ) / 4 ) )
29 4re
 |-  4 e. RR
30 29 a1i
 |-  ( T. -> 4 e. RR )
31 3 30 remulcld
 |-  ( T. -> ( 2 x. 4 ) e. RR )
32 9re
 |-  9 e. RR
33 32 a1i
 |-  ( T. -> 9 e. RR )
34 30 24 elrpd
 |-  ( T. -> 4 e. RR+ )
35 2cn
 |-  2 e. CC
36 4t2e8
 |-  ( 4 x. 2 ) = 8
37 20 35 36 mulcomli
 |-  ( 2 x. 4 ) = 8
38 37 a1i
 |-  ( T. -> ( 2 x. 4 ) = 8 )
39 8lt9
 |-  8 < 9
40 39 a1i
 |-  ( T. -> 8 < 9 )
41 38 40 eqbrtrd
 |-  ( T. -> ( 2 x. 4 ) < 9 )
42 31 33 34 41 ltdiv1dd
 |-  ( T. -> ( ( 2 x. 4 ) / 4 ) < ( 9 / 4 ) )
43 28 42 eqbrtrd
 |-  ( T. -> 2 < ( 9 / 4 ) )
44 eqid
 |-  9 = 9
45 3t3e9
 |-  ( 3 x. 3 ) = 9
46 44 45 eqtr4i
 |-  9 = ( 3 x. 3 )
47 46 a1i
 |-  ( T. -> 9 = ( 3 x. 3 ) )
48 eqid
 |-  4 = 4
49 2t2e4
 |-  ( 2 x. 2 ) = 4
50 48 49 eqtr4i
 |-  4 = ( 2 x. 2 )
51 50 a1i
 |-  ( T. -> 4 = ( 2 x. 2 ) )
52 47 51 oveq12d
 |-  ( T. -> ( 9 / 4 ) = ( ( 3 x. 3 ) / ( 2 x. 2 ) ) )
53 5 recnd
 |-  ( T. -> 3 e. CC )
54 3 recnd
 |-  ( T. -> 2 e. CC )
55 9 gt0ne0d
 |-  ( T. -> 2 =/= 0 )
56 53 54 53 54 55 55 divmuldivd
 |-  ( T. -> ( ( 3 / 2 ) x. ( 3 / 2 ) ) = ( ( 3 x. 3 ) / ( 2 x. 2 ) ) )
57 56 eqcomd
 |-  ( T. -> ( ( 3 x. 3 ) / ( 2 x. 2 ) ) = ( ( 3 / 2 ) x. ( 3 / 2 ) ) )
58 52 57 eqtrd
 |-  ( T. -> ( 9 / 4 ) = ( ( 3 / 2 ) x. ( 3 / 2 ) ) )
59 6 recnd
 |-  ( T. -> ( 3 / 2 ) e. CC )
60 sqval
 |-  ( ( 3 / 2 ) e. CC -> ( ( 3 / 2 ) ^ 2 ) = ( ( 3 / 2 ) x. ( 3 / 2 ) ) )
61 60 eqcomd
 |-  ( ( 3 / 2 ) e. CC -> ( ( 3 / 2 ) x. ( 3 / 2 ) ) = ( ( 3 / 2 ) ^ 2 ) )
62 59 61 syl
 |-  ( T. -> ( ( 3 / 2 ) x. ( 3 / 2 ) ) = ( ( 3 / 2 ) ^ 2 ) )
63 58 62 eqtrd
 |-  ( T. -> ( 9 / 4 ) = ( ( 3 / 2 ) ^ 2 ) )
64 43 63 breqtrd
 |-  ( T. -> 2 < ( ( 3 / 2 ) ^ 2 ) )
65 3lexlogpow2ineq1
 |-  ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) )
66 65 a1i
 |-  ( T. -> ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) )
67 66 simpld
 |-  ( T. -> ( 3 / 2 ) < ( 2 logb 3 ) )
68 2nn
 |-  2 e. NN
69 68 a1i
 |-  ( T. -> 2 e. NN )
70 3rp
 |-  3 e. RR+
71 70 a1i
 |-  ( T. -> 3 e. RR+ )
72 71 rphalfcld
 |-  ( T. -> ( 3 / 2 ) e. RR+ )
73 5 3 11 9 divgt0d
 |-  ( T. -> 0 < ( 3 / 2 ) )
74 22 6 17 73 67 lttrd
 |-  ( T. -> 0 < ( 2 logb 3 ) )
75 17 74 elrpd
 |-  ( T. -> ( 2 logb 3 ) e. RR+ )
76 rpexpmord
 |-  ( ( 2 e. NN /\ ( 3 / 2 ) e. RR+ /\ ( 2 logb 3 ) e. RR+ ) -> ( ( 3 / 2 ) < ( 2 logb 3 ) <-> ( ( 3 / 2 ) ^ 2 ) < ( ( 2 logb 3 ) ^ 2 ) ) )
77 69 72 75 76 syl3anc
 |-  ( T. -> ( ( 3 / 2 ) < ( 2 logb 3 ) <-> ( ( 3 / 2 ) ^ 2 ) < ( ( 2 logb 3 ) ^ 2 ) ) )
78 67 77 mpbid
 |-  ( T. -> ( ( 3 / 2 ) ^ 2 ) < ( ( 2 logb 3 ) ^ 2 ) )
79 3 7 18 64 78 lttrd
 |-  ( T. -> 2 < ( ( 2 logb 3 ) ^ 2 ) )
80 5re
 |-  5 e. RR
81 80 a1i
 |-  ( T. -> 5 e. RR )
82 22 11 gtned
 |-  ( T. -> 3 =/= 0 )
83 81 5 82 redivcld
 |-  ( T. -> ( 5 / 3 ) e. RR )
84 69 nnnn0d
 |-  ( T. -> 2 e. NN0 )
85 83 84 reexpcld
 |-  ( T. -> ( ( 5 / 3 ) ^ 2 ) e. RR )
86 66 simprd
 |-  ( T. -> ( 2 logb 3 ) < ( 5 / 3 ) )
87 5nn
 |-  5 e. NN
88 87 a1i
 |-  ( T. -> 5 e. NN )
89 88 nnrpd
 |-  ( T. -> 5 e. RR+ )
90 89 71 rpdivcld
 |-  ( T. -> ( 5 / 3 ) e. RR+ )
91 rpexpmord
 |-  ( ( 2 e. NN /\ ( 2 logb 3 ) e. RR+ /\ ( 5 / 3 ) e. RR+ ) -> ( ( 2 logb 3 ) < ( 5 / 3 ) <-> ( ( 2 logb 3 ) ^ 2 ) < ( ( 5 / 3 ) ^ 2 ) ) )
92 69 75 90 91 syl3anc
 |-  ( T. -> ( ( 2 logb 3 ) < ( 5 / 3 ) <-> ( ( 2 logb 3 ) ^ 2 ) < ( ( 5 / 3 ) ^ 2 ) ) )
93 86 92 mpbid
 |-  ( T. -> ( ( 2 logb 3 ) ^ 2 ) < ( ( 5 / 3 ) ^ 2 ) )
94 83 recnd
 |-  ( T. -> ( 5 / 3 ) e. CC )
95 94 sqvald
 |-  ( T. -> ( ( 5 / 3 ) ^ 2 ) = ( ( 5 / 3 ) x. ( 5 / 3 ) ) )
96 81 recnd
 |-  ( T. -> 5 e. CC )
97 96 53 96 53 82 82 divmuldivd
 |-  ( T. -> ( ( 5 / 3 ) x. ( 5 / 3 ) ) = ( ( 5 x. 5 ) / ( 3 x. 3 ) ) )
98 5t5e25
 |-  ( 5 x. 5 ) = ; 2 5
99 98 a1i
 |-  ( T. -> ( 5 x. 5 ) = ; 2 5 )
100 45 a1i
 |-  ( T. -> ( 3 x. 3 ) = 9 )
101 99 100 oveq12d
 |-  ( T. -> ( ( 5 x. 5 ) / ( 3 x. 3 ) ) = ( ; 2 5 / 9 ) )
102 2nn0
 |-  2 e. NN0
103 5nn0
 |-  5 e. NN0
104 7nn
 |-  7 e. NN
105 5lt7
 |-  5 < 7
106 102 103 104 105 declt
 |-  ; 2 5 < ; 2 7
107 9cn
 |-  9 e. CC
108 3cn
 |-  3 e. CC
109 9t3e27
 |-  ( 9 x. 3 ) = ; 2 7
110 107 108 109 mulcomli
 |-  ( 3 x. 9 ) = ; 2 7
111 106 110 breqtrri
 |-  ; 2 5 < ( 3 x. 9 )
112 111 a1i
 |-  ( T. -> ; 2 5 < ( 3 x. 9 ) )
113 102 87 decnncl
 |-  ; 2 5 e. NN
114 113 a1i
 |-  ( T. -> ; 2 5 e. NN )
115 114 nnred
 |-  ( T. -> ; 2 5 e. RR )
116 9nn
 |-  9 e. NN
117 116 a1i
 |-  ( T. -> 9 e. NN )
118 117 nnrpd
 |-  ( T. -> 9 e. RR+ )
119 115 5 118 ltdivmul2d
 |-  ( T. -> ( ( ; 2 5 / 9 ) < 3 <-> ; 2 5 < ( 3 x. 9 ) ) )
120 112 119 mpbird
 |-  ( T. -> ( ; 2 5 / 9 ) < 3 )
121 101 120 eqbrtrd
 |-  ( T. -> ( ( 5 x. 5 ) / ( 3 x. 3 ) ) < 3 )
122 97 121 eqbrtrd
 |-  ( T. -> ( ( 5 / 3 ) x. ( 5 / 3 ) ) < 3 )
123 95 122 eqbrtrd
 |-  ( T. -> ( ( 5 / 3 ) ^ 2 ) < 3 )
124 18 85 5 93 123 lttrd
 |-  ( T. -> ( ( 2 logb 3 ) ^ 2 ) < 3 )
125 79 124 jca
 |-  ( T. -> ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 ) )
126 1 125 ax-mp
 |-  ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 )