Metamath Proof Explorer


Theorem 5lt7

Description: 5 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 5lt7
|- 5 < 7

Proof

Step Hyp Ref Expression
1 5lt6
 |-  5 < 6
2 6lt7
 |-  6 < 7
3 5re
 |-  5 e. RR
4 6re
 |-  6 e. RR
5 7re
 |-  7 e. RR
6 3 4 5 lttri
 |-  ( ( 5 < 6 /\ 6 < 7 ) -> 5 < 7 )
7 1 2 6 mp2an
 |-  5 < 7