Metamath Proof Explorer


Theorem 5lt7

Description: 5 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 5lt7 5 < 7

Proof

Step Hyp Ref Expression
1 5lt6 5 < 6
2 6lt7 6 < 7
3 5re 5 ∈ ℝ
4 6re 6 ∈ ℝ
5 7re 7 ∈ ℝ
6 3 4 5 lttri ( ( 5 < 6 ∧ 6 < 7 ) → 5 < 7 )
7 1 2 6 mp2an 5 < 7