Metamath Proof Explorer


Theorem 4lt7

Description: 4 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 4lt7
|- 4 < 7

Proof

Step Hyp Ref Expression
1 4lt5
 |-  4 < 5
2 5lt7
 |-  5 < 7
3 4re
 |-  4 e. RR
4 5re
 |-  5 e. RR
5 7re
 |-  7 e. RR
6 3 4 5 lttri
 |-  ( ( 4 < 5 /\ 5 < 7 ) -> 4 < 7 )
7 1 2 6 mp2an
 |-  4 < 7