| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tru |
⊢ ⊤ |
| 2 |
|
2re |
⊢ 2 ∈ ℝ |
| 3 |
2
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
| 4 |
|
3re |
⊢ 3 ∈ ℝ |
| 5 |
4
|
a1i |
⊢ ( ⊤ → 3 ∈ ℝ ) |
| 6 |
5
|
rehalfcld |
⊢ ( ⊤ → ( 3 / 2 ) ∈ ℝ ) |
| 7 |
6
|
resqcld |
⊢ ( ⊤ → ( ( 3 / 2 ) ↑ 2 ) ∈ ℝ ) |
| 8 |
|
2pos |
⊢ 0 < 2 |
| 9 |
8
|
a1i |
⊢ ( ⊤ → 0 < 2 ) |
| 10 |
|
3pos |
⊢ 0 < 3 |
| 11 |
10
|
a1i |
⊢ ( ⊤ → 0 < 3 ) |
| 12 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 13 |
|
1lt2 |
⊢ 1 < 2 |
| 14 |
13
|
a1i |
⊢ ( ⊤ → 1 < 2 ) |
| 15 |
12 14
|
ltned |
⊢ ( ⊤ → 1 ≠ 2 ) |
| 16 |
15
|
necomd |
⊢ ( ⊤ → 2 ≠ 1 ) |
| 17 |
3 9 5 11 16
|
relogbcld |
⊢ ( ⊤ → ( 2 logb 3 ) ∈ ℝ ) |
| 18 |
17
|
resqcld |
⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ ) |
| 19 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 20 |
|
4cn |
⊢ 4 ∈ ℂ |
| 21 |
20
|
a1i |
⊢ ( ⊤ → 4 ∈ ℂ ) |
| 22 |
|
0red |
⊢ ( ⊤ → 0 ∈ ℝ ) |
| 23 |
|
4pos |
⊢ 0 < 4 |
| 24 |
23
|
a1i |
⊢ ( ⊤ → 0 < 4 ) |
| 25 |
22 24
|
ltned |
⊢ ( ⊤ → 0 ≠ 4 ) |
| 26 |
25
|
necomd |
⊢ ( ⊤ → 4 ≠ 0 ) |
| 27 |
19 21 26
|
divcan4d |
⊢ ( ⊤ → ( ( 2 · 4 ) / 4 ) = 2 ) |
| 28 |
27
|
eqcomd |
⊢ ( ⊤ → 2 = ( ( 2 · 4 ) / 4 ) ) |
| 29 |
|
4re |
⊢ 4 ∈ ℝ |
| 30 |
29
|
a1i |
⊢ ( ⊤ → 4 ∈ ℝ ) |
| 31 |
3 30
|
remulcld |
⊢ ( ⊤ → ( 2 · 4 ) ∈ ℝ ) |
| 32 |
|
9re |
⊢ 9 ∈ ℝ |
| 33 |
32
|
a1i |
⊢ ( ⊤ → 9 ∈ ℝ ) |
| 34 |
30 24
|
elrpd |
⊢ ( ⊤ → 4 ∈ ℝ+ ) |
| 35 |
|
2cn |
⊢ 2 ∈ ℂ |
| 36 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
| 37 |
20 35 36
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
| 38 |
37
|
a1i |
⊢ ( ⊤ → ( 2 · 4 ) = 8 ) |
| 39 |
|
8lt9 |
⊢ 8 < 9 |
| 40 |
39
|
a1i |
⊢ ( ⊤ → 8 < 9 ) |
| 41 |
38 40
|
eqbrtrd |
⊢ ( ⊤ → ( 2 · 4 ) < 9 ) |
| 42 |
31 33 34 41
|
ltdiv1dd |
⊢ ( ⊤ → ( ( 2 · 4 ) / 4 ) < ( 9 / 4 ) ) |
| 43 |
28 42
|
eqbrtrd |
⊢ ( ⊤ → 2 < ( 9 / 4 ) ) |
| 44 |
|
eqid |
⊢ 9 = 9 |
| 45 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 46 |
44 45
|
eqtr4i |
⊢ 9 = ( 3 · 3 ) |
| 47 |
46
|
a1i |
⊢ ( ⊤ → 9 = ( 3 · 3 ) ) |
| 48 |
|
eqid |
⊢ 4 = 4 |
| 49 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 50 |
48 49
|
eqtr4i |
⊢ 4 = ( 2 · 2 ) |
| 51 |
50
|
a1i |
⊢ ( ⊤ → 4 = ( 2 · 2 ) ) |
| 52 |
47 51
|
oveq12d |
⊢ ( ⊤ → ( 9 / 4 ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) ) |
| 53 |
5
|
recnd |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 54 |
3
|
recnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 55 |
9
|
gt0ne0d |
⊢ ( ⊤ → 2 ≠ 0 ) |
| 56 |
53 54 53 54 55 55
|
divmuldivd |
⊢ ( ⊤ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ⊤ → ( ( 3 · 3 ) / ( 2 · 2 ) ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) ) |
| 58 |
52 57
|
eqtrd |
⊢ ( ⊤ → ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) ) |
| 59 |
6
|
recnd |
⊢ ( ⊤ → ( 3 / 2 ) ∈ ℂ ) |
| 60 |
|
sqval |
⊢ ( ( 3 / 2 ) ∈ ℂ → ( ( 3 / 2 ) ↑ 2 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 3 / 2 ) ∈ ℂ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 / 2 ) ↑ 2 ) ) |
| 62 |
59 61
|
syl |
⊢ ( ⊤ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 / 2 ) ↑ 2 ) ) |
| 63 |
58 62
|
eqtrd |
⊢ ( ⊤ → ( 9 / 4 ) = ( ( 3 / 2 ) ↑ 2 ) ) |
| 64 |
43 63
|
breqtrd |
⊢ ( ⊤ → 2 < ( ( 3 / 2 ) ↑ 2 ) ) |
| 65 |
|
3lexlogpow2ineq1 |
⊢ ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 66 |
65
|
a1i |
⊢ ( ⊤ → ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) ) ) |
| 67 |
66
|
simpld |
⊢ ( ⊤ → ( 3 / 2 ) < ( 2 logb 3 ) ) |
| 68 |
|
2nn |
⊢ 2 ∈ ℕ |
| 69 |
68
|
a1i |
⊢ ( ⊤ → 2 ∈ ℕ ) |
| 70 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 71 |
70
|
a1i |
⊢ ( ⊤ → 3 ∈ ℝ+ ) |
| 72 |
71
|
rphalfcld |
⊢ ( ⊤ → ( 3 / 2 ) ∈ ℝ+ ) |
| 73 |
5 3 11 9
|
divgt0d |
⊢ ( ⊤ → 0 < ( 3 / 2 ) ) |
| 74 |
22 6 17 73 67
|
lttrd |
⊢ ( ⊤ → 0 < ( 2 logb 3 ) ) |
| 75 |
17 74
|
elrpd |
⊢ ( ⊤ → ( 2 logb 3 ) ∈ ℝ+ ) |
| 76 |
|
rpexpmord |
⊢ ( ( 2 ∈ ℕ ∧ ( 3 / 2 ) ∈ ℝ+ ∧ ( 2 logb 3 ) ∈ ℝ+ ) → ( ( 3 / 2 ) < ( 2 logb 3 ) ↔ ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) ) ) |
| 77 |
69 72 75 76
|
syl3anc |
⊢ ( ⊤ → ( ( 3 / 2 ) < ( 2 logb 3 ) ↔ ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) ) ) |
| 78 |
67 77
|
mpbid |
⊢ ( ⊤ → ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) ) |
| 79 |
3 7 18 64 78
|
lttrd |
⊢ ( ⊤ → 2 < ( ( 2 logb 3 ) ↑ 2 ) ) |
| 80 |
|
5re |
⊢ 5 ∈ ℝ |
| 81 |
80
|
a1i |
⊢ ( ⊤ → 5 ∈ ℝ ) |
| 82 |
22 11
|
gtned |
⊢ ( ⊤ → 3 ≠ 0 ) |
| 83 |
81 5 82
|
redivcld |
⊢ ( ⊤ → ( 5 / 3 ) ∈ ℝ ) |
| 84 |
69
|
nnnn0d |
⊢ ( ⊤ → 2 ∈ ℕ0 ) |
| 85 |
83 84
|
reexpcld |
⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) ∈ ℝ ) |
| 86 |
66
|
simprd |
⊢ ( ⊤ → ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 87 |
|
5nn |
⊢ 5 ∈ ℕ |
| 88 |
87
|
a1i |
⊢ ( ⊤ → 5 ∈ ℕ ) |
| 89 |
88
|
nnrpd |
⊢ ( ⊤ → 5 ∈ ℝ+ ) |
| 90 |
89 71
|
rpdivcld |
⊢ ( ⊤ → ( 5 / 3 ) ∈ ℝ+ ) |
| 91 |
|
rpexpmord |
⊢ ( ( 2 ∈ ℕ ∧ ( 2 logb 3 ) ∈ ℝ+ ∧ ( 5 / 3 ) ∈ ℝ+ ) → ( ( 2 logb 3 ) < ( 5 / 3 ) ↔ ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) ) ) |
| 92 |
69 75 90 91
|
syl3anc |
⊢ ( ⊤ → ( ( 2 logb 3 ) < ( 5 / 3 ) ↔ ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) ) ) |
| 93 |
86 92
|
mpbid |
⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) ) |
| 94 |
83
|
recnd |
⊢ ( ⊤ → ( 5 / 3 ) ∈ ℂ ) |
| 95 |
94
|
sqvald |
⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) = ( ( 5 / 3 ) · ( 5 / 3 ) ) ) |
| 96 |
81
|
recnd |
⊢ ( ⊤ → 5 ∈ ℂ ) |
| 97 |
96 53 96 53 82 82
|
divmuldivd |
⊢ ( ⊤ → ( ( 5 / 3 ) · ( 5 / 3 ) ) = ( ( 5 · 5 ) / ( 3 · 3 ) ) ) |
| 98 |
|
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
| 99 |
98
|
a1i |
⊢ ( ⊤ → ( 5 · 5 ) = ; 2 5 ) |
| 100 |
45
|
a1i |
⊢ ( ⊤ → ( 3 · 3 ) = 9 ) |
| 101 |
99 100
|
oveq12d |
⊢ ( ⊤ → ( ( 5 · 5 ) / ( 3 · 3 ) ) = ( ; 2 5 / 9 ) ) |
| 102 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 103 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 104 |
|
7nn |
⊢ 7 ∈ ℕ |
| 105 |
|
5lt7 |
⊢ 5 < 7 |
| 106 |
102 103 104 105
|
declt |
⊢ ; 2 5 < ; 2 7 |
| 107 |
|
9cn |
⊢ 9 ∈ ℂ |
| 108 |
|
3cn |
⊢ 3 ∈ ℂ |
| 109 |
|
9t3e27 |
⊢ ( 9 · 3 ) = ; 2 7 |
| 110 |
107 108 109
|
mulcomli |
⊢ ( 3 · 9 ) = ; 2 7 |
| 111 |
106 110
|
breqtrri |
⊢ ; 2 5 < ( 3 · 9 ) |
| 112 |
111
|
a1i |
⊢ ( ⊤ → ; 2 5 < ( 3 · 9 ) ) |
| 113 |
102 87
|
decnncl |
⊢ ; 2 5 ∈ ℕ |
| 114 |
113
|
a1i |
⊢ ( ⊤ → ; 2 5 ∈ ℕ ) |
| 115 |
114
|
nnred |
⊢ ( ⊤ → ; 2 5 ∈ ℝ ) |
| 116 |
|
9nn |
⊢ 9 ∈ ℕ |
| 117 |
116
|
a1i |
⊢ ( ⊤ → 9 ∈ ℕ ) |
| 118 |
117
|
nnrpd |
⊢ ( ⊤ → 9 ∈ ℝ+ ) |
| 119 |
115 5 118
|
ltdivmul2d |
⊢ ( ⊤ → ( ( ; 2 5 / 9 ) < 3 ↔ ; 2 5 < ( 3 · 9 ) ) ) |
| 120 |
112 119
|
mpbird |
⊢ ( ⊤ → ( ; 2 5 / 9 ) < 3 ) |
| 121 |
101 120
|
eqbrtrd |
⊢ ( ⊤ → ( ( 5 · 5 ) / ( 3 · 3 ) ) < 3 ) |
| 122 |
97 121
|
eqbrtrd |
⊢ ( ⊤ → ( ( 5 / 3 ) · ( 5 / 3 ) ) < 3 ) |
| 123 |
95 122
|
eqbrtrd |
⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) < 3 ) |
| 124 |
18 85 5 93 123
|
lttrd |
⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) < 3 ) |
| 125 |
79 124
|
jca |
⊢ ( ⊤ → ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) ) |
| 126 |
1 125
|
ax-mp |
⊢ ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) |