Metamath Proof Explorer


Theorem 3lexlogpow2ineq2

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow2ineq2 ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 )

Proof

Step Hyp Ref Expression
1 tru
2 2re 2 ∈ ℝ
3 2 a1i ( ⊤ → 2 ∈ ℝ )
4 3re 3 ∈ ℝ
5 4 a1i ( ⊤ → 3 ∈ ℝ )
6 5 rehalfcld ( ⊤ → ( 3 / 2 ) ∈ ℝ )
7 6 resqcld ( ⊤ → ( ( 3 / 2 ) ↑ 2 ) ∈ ℝ )
8 2pos 0 < 2
9 8 a1i ( ⊤ → 0 < 2 )
10 3pos 0 < 3
11 10 a1i ( ⊤ → 0 < 3 )
12 1red ( ⊤ → 1 ∈ ℝ )
13 1lt2 1 < 2
14 13 a1i ( ⊤ → 1 < 2 )
15 12 14 ltned ( ⊤ → 1 ≠ 2 )
16 15 necomd ( ⊤ → 2 ≠ 1 )
17 3 9 5 11 16 relogbcld ( ⊤ → ( 2 logb 3 ) ∈ ℝ )
18 17 resqcld ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ )
19 2cnd ( ⊤ → 2 ∈ ℂ )
20 4cn 4 ∈ ℂ
21 20 a1i ( ⊤ → 4 ∈ ℂ )
22 0red ( ⊤ → 0 ∈ ℝ )
23 4pos 0 < 4
24 23 a1i ( ⊤ → 0 < 4 )
25 22 24 ltned ( ⊤ → 0 ≠ 4 )
26 25 necomd ( ⊤ → 4 ≠ 0 )
27 19 21 26 divcan4d ( ⊤ → ( ( 2 · 4 ) / 4 ) = 2 )
28 27 eqcomd ( ⊤ → 2 = ( ( 2 · 4 ) / 4 ) )
29 4re 4 ∈ ℝ
30 29 a1i ( ⊤ → 4 ∈ ℝ )
31 3 30 remulcld ( ⊤ → ( 2 · 4 ) ∈ ℝ )
32 9re 9 ∈ ℝ
33 32 a1i ( ⊤ → 9 ∈ ℝ )
34 30 24 elrpd ( ⊤ → 4 ∈ ℝ+ )
35 2cn 2 ∈ ℂ
36 4t2e8 ( 4 · 2 ) = 8
37 20 35 36 mulcomli ( 2 · 4 ) = 8
38 37 a1i ( ⊤ → ( 2 · 4 ) = 8 )
39 8lt9 8 < 9
40 39 a1i ( ⊤ → 8 < 9 )
41 38 40 eqbrtrd ( ⊤ → ( 2 · 4 ) < 9 )
42 31 33 34 41 ltdiv1dd ( ⊤ → ( ( 2 · 4 ) / 4 ) < ( 9 / 4 ) )
43 28 42 eqbrtrd ( ⊤ → 2 < ( 9 / 4 ) )
44 eqid 9 = 9
45 3t3e9 ( 3 · 3 ) = 9
46 44 45 eqtr4i 9 = ( 3 · 3 )
47 46 a1i ( ⊤ → 9 = ( 3 · 3 ) )
48 eqid 4 = 4
49 2t2e4 ( 2 · 2 ) = 4
50 48 49 eqtr4i 4 = ( 2 · 2 )
51 50 a1i ( ⊤ → 4 = ( 2 · 2 ) )
52 47 51 oveq12d ( ⊤ → ( 9 / 4 ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) )
53 5 recnd ( ⊤ → 3 ∈ ℂ )
54 3 recnd ( ⊤ → 2 ∈ ℂ )
55 9 gt0ne0d ( ⊤ → 2 ≠ 0 )
56 53 54 53 54 55 55 divmuldivd ( ⊤ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) )
57 56 eqcomd ( ⊤ → ( ( 3 · 3 ) / ( 2 · 2 ) ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) )
58 52 57 eqtrd ( ⊤ → ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) )
59 6 recnd ( ⊤ → ( 3 / 2 ) ∈ ℂ )
60 sqval ( ( 3 / 2 ) ∈ ℂ → ( ( 3 / 2 ) ↑ 2 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) )
61 60 eqcomd ( ( 3 / 2 ) ∈ ℂ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 / 2 ) ↑ 2 ) )
62 59 61 syl ( ⊤ → ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 / 2 ) ↑ 2 ) )
63 58 62 eqtrd ( ⊤ → ( 9 / 4 ) = ( ( 3 / 2 ) ↑ 2 ) )
64 43 63 breqtrd ( ⊤ → 2 < ( ( 3 / 2 ) ↑ 2 ) )
65 3lexlogpow2ineq1 ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) )
66 65 a1i ( ⊤ → ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) ) )
67 66 simpld ( ⊤ → ( 3 / 2 ) < ( 2 logb 3 ) )
68 2nn 2 ∈ ℕ
69 68 a1i ( ⊤ → 2 ∈ ℕ )
70 3rp 3 ∈ ℝ+
71 70 a1i ( ⊤ → 3 ∈ ℝ+ )
72 71 rphalfcld ( ⊤ → ( 3 / 2 ) ∈ ℝ+ )
73 5 3 11 9 divgt0d ( ⊤ → 0 < ( 3 / 2 ) )
74 22 6 17 73 67 lttrd ( ⊤ → 0 < ( 2 logb 3 ) )
75 17 74 elrpd ( ⊤ → ( 2 logb 3 ) ∈ ℝ+ )
76 rpexpmord ( ( 2 ∈ ℕ ∧ ( 3 / 2 ) ∈ ℝ+ ∧ ( 2 logb 3 ) ∈ ℝ+ ) → ( ( 3 / 2 ) < ( 2 logb 3 ) ↔ ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) ) )
77 69 72 75 76 syl3anc ( ⊤ → ( ( 3 / 2 ) < ( 2 logb 3 ) ↔ ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) ) )
78 67 77 mpbid ( ⊤ → ( ( 3 / 2 ) ↑ 2 ) < ( ( 2 logb 3 ) ↑ 2 ) )
79 3 7 18 64 78 lttrd ( ⊤ → 2 < ( ( 2 logb 3 ) ↑ 2 ) )
80 5re 5 ∈ ℝ
81 80 a1i ( ⊤ → 5 ∈ ℝ )
82 22 11 gtned ( ⊤ → 3 ≠ 0 )
83 81 5 82 redivcld ( ⊤ → ( 5 / 3 ) ∈ ℝ )
84 69 nnnn0d ( ⊤ → 2 ∈ ℕ0 )
85 83 84 reexpcld ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) ∈ ℝ )
86 66 simprd ( ⊤ → ( 2 logb 3 ) < ( 5 / 3 ) )
87 5nn 5 ∈ ℕ
88 87 a1i ( ⊤ → 5 ∈ ℕ )
89 88 nnrpd ( ⊤ → 5 ∈ ℝ+ )
90 89 71 rpdivcld ( ⊤ → ( 5 / 3 ) ∈ ℝ+ )
91 rpexpmord ( ( 2 ∈ ℕ ∧ ( 2 logb 3 ) ∈ ℝ+ ∧ ( 5 / 3 ) ∈ ℝ+ ) → ( ( 2 logb 3 ) < ( 5 / 3 ) ↔ ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) ) )
92 69 75 90 91 syl3anc ( ⊤ → ( ( 2 logb 3 ) < ( 5 / 3 ) ↔ ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) ) )
93 86 92 mpbid ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) < ( ( 5 / 3 ) ↑ 2 ) )
94 83 recnd ( ⊤ → ( 5 / 3 ) ∈ ℂ )
95 94 sqvald ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) = ( ( 5 / 3 ) · ( 5 / 3 ) ) )
96 81 recnd ( ⊤ → 5 ∈ ℂ )
97 96 53 96 53 82 82 divmuldivd ( ⊤ → ( ( 5 / 3 ) · ( 5 / 3 ) ) = ( ( 5 · 5 ) / ( 3 · 3 ) ) )
98 5t5e25 ( 5 · 5 ) = 2 5
99 98 a1i ( ⊤ → ( 5 · 5 ) = 2 5 )
100 45 a1i ( ⊤ → ( 3 · 3 ) = 9 )
101 99 100 oveq12d ( ⊤ → ( ( 5 · 5 ) / ( 3 · 3 ) ) = ( 2 5 / 9 ) )
102 2nn0 2 ∈ ℕ0
103 5nn0 5 ∈ ℕ0
104 7nn 7 ∈ ℕ
105 5lt7 5 < 7
106 102 103 104 105 declt 2 5 < 2 7
107 9cn 9 ∈ ℂ
108 3cn 3 ∈ ℂ
109 9t3e27 ( 9 · 3 ) = 2 7
110 107 108 109 mulcomli ( 3 · 9 ) = 2 7
111 106 110 breqtrri 2 5 < ( 3 · 9 )
112 111 a1i ( ⊤ → 2 5 < ( 3 · 9 ) )
113 102 87 decnncl 2 5 ∈ ℕ
114 113 a1i ( ⊤ → 2 5 ∈ ℕ )
115 114 nnred ( ⊤ → 2 5 ∈ ℝ )
116 9nn 9 ∈ ℕ
117 116 a1i ( ⊤ → 9 ∈ ℕ )
118 117 nnrpd ( ⊤ → 9 ∈ ℝ+ )
119 115 5 118 ltdivmul2d ( ⊤ → ( ( 2 5 / 9 ) < 3 ↔ 2 5 < ( 3 · 9 ) ) )
120 112 119 mpbird ( ⊤ → ( 2 5 / 9 ) < 3 )
121 101 120 eqbrtrd ( ⊤ → ( ( 5 · 5 ) / ( 3 · 3 ) ) < 3 )
122 97 121 eqbrtrd ( ⊤ → ( ( 5 / 3 ) · ( 5 / 3 ) ) < 3 )
123 95 122 eqbrtrd ( ⊤ → ( ( 5 / 3 ) ↑ 2 ) < 3 )
124 18 85 5 93 123 lttrd ( ⊤ → ( ( 2 logb 3 ) ↑ 2 ) < 3 )
125 79 124 jca ( ⊤ → ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) )
126 1 125 ax-mp ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 )