Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3lexlogpow5ineq5 | ⊢ ( ( 2 logb 3 ) ↑ 5 ) ≤ ; 1 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( ⊤ → 2 ∈ ℝ ) |
| 3 | 2pos | ⊢ 0 < 2 | |
| 4 | 3 | a1i | ⊢ ( ⊤ → 0 < 2 ) |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 5 | a1i | ⊢ ( ⊤ → 3 ∈ ℝ ) |
| 7 | 3pos | ⊢ 0 < 3 | |
| 8 | 7 | a1i | ⊢ ( ⊤ → 0 < 3 ) |
| 9 | 1red | ⊢ ( ⊤ → 1 ∈ ℝ ) | |
| 10 | 1lt2 | ⊢ 1 < 2 | |
| 11 | 10 | a1i | ⊢ ( ⊤ → 1 < 2 ) |
| 12 | 9 11 | ltned | ⊢ ( ⊤ → 1 ≠ 2 ) |
| 13 | 12 | necomd | ⊢ ( ⊤ → 2 ≠ 1 ) |
| 14 | 2 4 6 8 13 | relogbcld | ⊢ ( ⊤ → ( 2 logb 3 ) ∈ ℝ ) |
| 15 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 16 | 15 | a1i | ⊢ ( ⊤ → 5 ∈ ℕ0 ) |
| 17 | 14 16 | reexpcld | ⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ ) |
| 18 | 16 | nn0red | ⊢ ( ⊤ → 5 ∈ ℝ ) |
| 19 | 8 | gt0ne0d | ⊢ ( ⊤ → 3 ≠ 0 ) |
| 20 | 18 6 19 | redivcld | ⊢ ( ⊤ → ( 5 / 3 ) ∈ ℝ ) |
| 21 | 20 16 | reexpcld | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 5 ) ∈ ℝ ) |
| 22 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 23 | 5nn | ⊢ 5 ∈ ℕ | |
| 24 | 22 23 | decnncl | ⊢ ; 1 5 ∈ ℕ |
| 25 | 24 | a1i | ⊢ ( ⊤ → ; 1 5 ∈ ℕ ) |
| 26 | 25 | nnred | ⊢ ( ⊤ → ; 1 5 ∈ ℝ ) |
| 27 | 0red | ⊢ ( ⊤ → 0 ∈ ℝ ) | |
| 28 | 6 | rehalfcld | ⊢ ( ⊤ → ( 3 / 2 ) ∈ ℝ ) |
| 29 | 6 2 8 4 | divgt0d | ⊢ ( ⊤ → 0 < ( 3 / 2 ) ) |
| 30 | 3lexlogpow2ineq1 | ⊢ ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) ) | |
| 31 | 30 | simpli | ⊢ ( 3 / 2 ) < ( 2 logb 3 ) |
| 32 | 31 | a1i | ⊢ ( ⊤ → ( 3 / 2 ) < ( 2 logb 3 ) ) |
| 33 | 27 28 14 29 32 | lttrd | ⊢ ( ⊤ → 0 < ( 2 logb 3 ) ) |
| 34 | 27 14 33 | ltled | ⊢ ( ⊤ → 0 ≤ ( 2 logb 3 ) ) |
| 35 | 30 | simpri | ⊢ ( 2 logb 3 ) < ( 5 / 3 ) |
| 36 | 35 | a1i | ⊢ ( ⊤ → ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 37 | 14 20 36 | ltled | ⊢ ( ⊤ → ( 2 logb 3 ) ≤ ( 5 / 3 ) ) |
| 38 | 14 20 16 34 37 | leexp1ad | ⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ( 5 / 3 ) ↑ 5 ) ) |
| 39 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 40 | 39 | a1i | ⊢ ( ⊤ → 5 = ( 4 + 1 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 5 ) = ( ( 5 / 3 ) ↑ ( 4 + 1 ) ) ) |
| 42 | 20 | recnd | ⊢ ( ⊤ → ( 5 / 3 ) ∈ ℂ ) |
| 43 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 44 | 43 | a1i | ⊢ ( ⊤ → 4 ∈ ℕ0 ) |
| 45 | 42 44 | expp1d | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ ( 4 + 1 ) ) = ( ( ( 5 / 3 ) ↑ 4 ) · ( 5 / 3 ) ) ) |
| 46 | 41 45 | eqtrd | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 5 ) = ( ( ( 5 / 3 ) ↑ 4 ) · ( 5 / 3 ) ) ) |
| 47 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 48 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 49 | 47 48 | deccl | ⊢ ; 6 2 ∈ ℕ0 |
| 50 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 51 | 50 48 | deccl | ⊢ ; 7 2 ∈ ℕ0 |
| 52 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 53 | 9re | ⊢ 9 ∈ ℝ | |
| 54 | 53 | a1i | ⊢ ( ⊤ → 9 ∈ ℝ ) |
| 55 | 5lt9 | ⊢ 5 < 9 | |
| 56 | 55 | a1i | ⊢ ( ⊤ → 5 < 9 ) |
| 57 | 18 54 56 | ltled | ⊢ ( ⊤ → 5 ≤ 9 ) |
| 58 | 57 | mptru | ⊢ 5 ≤ 9 |
| 59 | 2lt10 | ⊢ 2 < ; 1 0 | |
| 60 | 6lt7 | ⊢ 6 < 7 | |
| 61 | 47 50 48 48 59 60 | decltc | ⊢ ; 6 2 < ; 7 2 |
| 62 | 49 51 15 52 58 61 | decleh | ⊢ ; ; 6 2 5 ≤ ; ; 7 2 9 |
| 63 | 62 | a1i | ⊢ ( ⊤ → ; ; 6 2 5 ≤ ; ; 7 2 9 ) |
| 64 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 65 | eqid | ⊢ ; 8 1 = ; 8 1 | |
| 66 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 67 | 9cn | ⊢ 9 ∈ ℂ | |
| 68 | 8cn | ⊢ 8 ∈ ℂ | |
| 69 | 9t8e72 | ⊢ ( 9 · 8 ) = ; 7 2 | |
| 70 | 67 68 69 | mulcomli | ⊢ ( 8 · 9 ) = ; 7 2 |
| 71 | 2cn | ⊢ 2 ∈ ℂ | |
| 72 | 71 | addridi | ⊢ ( 2 + 0 ) = 2 |
| 73 | 50 48 66 70 72 | decaddi | ⊢ ( ( 8 · 9 ) + 0 ) = ; 7 2 |
| 74 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 75 | 67 | mulridi | ⊢ ( 9 · 1 ) = 9 |
| 76 | 52 | dec0h | ⊢ 9 = ; 0 9 |
| 77 | 76 | eqcomi | ⊢ ; 0 9 = 9 |
| 78 | 75 77 | eqtr4i | ⊢ ( 9 · 1 ) = ; 0 9 |
| 79 | 67 74 78 | mulcomli | ⊢ ( 1 · 9 ) = ; 0 9 |
| 80 | 52 64 22 65 52 66 73 79 | decmul1c | ⊢ ( ; 8 1 · 9 ) = ; ; 7 2 9 |
| 81 | 80 | a1i | ⊢ ( ⊤ → ( ; 8 1 · 9 ) = ; ; 7 2 9 ) |
| 82 | 81 | eqcomd | ⊢ ( ⊤ → ; ; 7 2 9 = ( ; 8 1 · 9 ) ) |
| 83 | 63 82 | breqtrd | ⊢ ( ⊤ → ; ; 6 2 5 ≤ ( ; 8 1 · 9 ) ) |
| 84 | eqid | ⊢ 4 = 4 | |
| 85 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 86 | 84 85 | eqtr4i | ⊢ 4 = ( 2 + 2 ) |
| 87 | 86 | a1i | ⊢ ( ⊤ → 4 = ( 2 + 2 ) ) |
| 88 | 87 | oveq2d | ⊢ ( ⊤ → ( 5 ↑ 4 ) = ( 5 ↑ ( 2 + 2 ) ) ) |
| 89 | 23 | nncni | ⊢ 5 ∈ ℂ |
| 90 | 89 | a1i | ⊢ ( ⊤ → 5 ∈ ℂ ) |
| 91 | 48 | a1i | ⊢ ( ⊤ → 2 ∈ ℕ0 ) |
| 92 | 90 91 91 | expaddd | ⊢ ( ⊤ → ( 5 ↑ ( 2 + 2 ) ) = ( ( 5 ↑ 2 ) · ( 5 ↑ 2 ) ) ) |
| 93 | 89 | sqvali | ⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
| 94 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 95 | 93 94 | eqtri | ⊢ ( 5 ↑ 2 ) = ; 2 5 |
| 96 | 95 | a1i | ⊢ ( ⊤ → ( 5 ↑ 2 ) = ; 2 5 ) |
| 97 | 96 96 | oveq12d | ⊢ ( ⊤ → ( ( 5 ↑ 2 ) · ( 5 ↑ 2 ) ) = ( ; 2 5 · ; 2 5 ) ) |
| 98 | 88 92 97 | 3eqtrd | ⊢ ( ⊤ → ( 5 ↑ 4 ) = ( ; 2 5 · ; 2 5 ) ) |
| 99 | 48 15 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 100 | eqid | ⊢ ; 2 5 = ; 2 5 | |
| 101 | 22 48 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 102 | 48 | dec0h | ⊢ 2 = ; 0 2 |
| 103 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 104 | 99 | nn0cni | ⊢ ; 2 5 ∈ ℂ |
| 105 | 104 | mul02i | ⊢ ( 0 · ; 2 5 ) = 0 |
| 106 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 107 | 89 74 106 | addcomli | ⊢ ( 1 + 5 ) = 6 |
| 108 | 105 107 | oveq12i | ⊢ ( ( 0 · ; 2 5 ) + ( 1 + 5 ) ) = ( 0 + 6 ) |
| 109 | 6cn | ⊢ 6 ∈ ℂ | |
| 110 | 109 | addlidi | ⊢ ( 0 + 6 ) = 6 |
| 111 | 108 110 | eqtri | ⊢ ( ( 0 · ; 2 5 ) + ( 1 + 5 ) ) = 6 |
| 112 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 113 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 114 | 112 113 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 115 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 116 | 114 115 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
| 117 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 118 | 89 71 117 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 119 | 71 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 120 | 22 66 48 118 119 | decaddi | ⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
| 121 | 48 15 66 48 100 102 48 48 22 116 120 | decma2c | ⊢ ( ( 2 · ; 2 5 ) + 2 ) = ; 5 2 |
| 122 | 66 48 22 48 102 103 99 48 15 111 121 | decmac | ⊢ ( ( 2 · ; 2 5 ) + ; 1 2 ) = ; 6 2 |
| 123 | 22 66 48 117 119 | decaddi | ⊢ ( ( 5 · 2 ) + 2 ) = ; 1 2 |
| 124 | 15 48 15 100 15 48 123 94 | decmul2c | ⊢ ( 5 · ; 2 5 ) = ; ; 1 2 5 |
| 125 | 99 48 15 100 15 101 122 124 | decmul1c | ⊢ ( ; 2 5 · ; 2 5 ) = ; ; 6 2 5 |
| 126 | 125 | a1i | ⊢ ( ⊤ → ( ; 2 5 · ; 2 5 ) = ; ; 6 2 5 ) |
| 127 | 98 126 | eqtr2d | ⊢ ( ⊤ → ; ; 6 2 5 = ( 5 ↑ 4 ) ) |
| 128 | 87 | oveq2d | ⊢ ( ⊤ → ( 3 ↑ 4 ) = ( 3 ↑ ( 2 + 2 ) ) ) |
| 129 | 3cn | ⊢ 3 ∈ ℂ | |
| 130 | 129 | a1i | ⊢ ( ⊤ → 3 ∈ ℂ ) |
| 131 | 130 91 91 | expaddd | ⊢ ( ⊤ → ( 3 ↑ ( 2 + 2 ) ) = ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) ) |
| 132 | 129 | sqvali | ⊢ ( 3 ↑ 2 ) = ( 3 · 3 ) |
| 133 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 134 | 132 133 | eqtri | ⊢ ( 3 ↑ 2 ) = 9 |
| 135 | 134 | a1i | ⊢ ( ⊤ → ( 3 ↑ 2 ) = 9 ) |
| 136 | 135 135 | oveq12d | ⊢ ( ⊤ → ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) = ( 9 · 9 ) ) |
| 137 | 9t9e81 | ⊢ ( 9 · 9 ) = ; 8 1 | |
| 138 | 137 | a1i | ⊢ ( ⊤ → ( 9 · 9 ) = ; 8 1 ) |
| 139 | 136 138 | eqtrd | ⊢ ( ⊤ → ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) = ; 8 1 ) |
| 140 | 128 131 139 | 3eqtrd | ⊢ ( ⊤ → ( 3 ↑ 4 ) = ; 8 1 ) |
| 141 | 140 | eqcomd | ⊢ ( ⊤ → ; 8 1 = ( 3 ↑ 4 ) ) |
| 142 | 141 | oveq1d | ⊢ ( ⊤ → ( ; 8 1 · 9 ) = ( ( 3 ↑ 4 ) · 9 ) ) |
| 143 | 83 127 142 | 3brtr3d | ⊢ ( ⊤ → ( 5 ↑ 4 ) ≤ ( ( 3 ↑ 4 ) · 9 ) ) |
| 144 | 18 44 | reexpcld | ⊢ ( ⊤ → ( 5 ↑ 4 ) ∈ ℝ ) |
| 145 | 3rp | ⊢ 3 ∈ ℝ+ | |
| 146 | 145 | a1i | ⊢ ( ⊤ → 3 ∈ ℝ+ ) |
| 147 | 4z | ⊢ 4 ∈ ℤ | |
| 148 | 147 | a1i | ⊢ ( ⊤ → 4 ∈ ℤ ) |
| 149 | 146 148 | rpexpcld | ⊢ ( ⊤ → ( 3 ↑ 4 ) ∈ ℝ+ ) |
| 150 | 144 54 149 | ledivmuld | ⊢ ( ⊤ → ( ( ( 5 ↑ 4 ) / ( 3 ↑ 4 ) ) ≤ 9 ↔ ( 5 ↑ 4 ) ≤ ( ( 3 ↑ 4 ) · 9 ) ) ) |
| 151 | 143 150 | mpbird | ⊢ ( ⊤ → ( ( 5 ↑ 4 ) / ( 3 ↑ 4 ) ) ≤ 9 ) |
| 152 | 18 | recnd | ⊢ ( ⊤ → 5 ∈ ℂ ) |
| 153 | 152 130 19 44 | expdivd | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 4 ) = ( ( 5 ↑ 4 ) / ( 3 ↑ 4 ) ) ) |
| 154 | 153 | eqcomd | ⊢ ( ⊤ → ( ( 5 ↑ 4 ) / ( 3 ↑ 4 ) ) = ( ( 5 / 3 ) ↑ 4 ) ) |
| 155 | 26 | recnd | ⊢ ( ⊤ → ; 1 5 ∈ ℂ ) |
| 156 | 23 | nngt0i | ⊢ 0 < 5 |
| 157 | 156 | a1i | ⊢ ( ⊤ → 0 < 5 ) |
| 158 | 27 157 | ltned | ⊢ ( ⊤ → 0 ≠ 5 ) |
| 159 | 158 | necomd | ⊢ ( ⊤ → 5 ≠ 0 ) |
| 160 | 155 152 130 159 19 | divdiv2d | ⊢ ( ⊤ → ( ; 1 5 / ( 5 / 3 ) ) = ( ( ; 1 5 · 3 ) / 5 ) ) |
| 161 | 5cn | ⊢ 5 ∈ ℂ | |
| 162 | 9t5e45 | ⊢ ( 9 · 5 ) = ; 4 5 | |
| 163 | 67 161 162 | mulcomli | ⊢ ( 5 · 9 ) = ; 4 5 |
| 164 | 163 | a1i | ⊢ ( ⊤ → ( 5 · 9 ) = ; 4 5 ) |
| 165 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 166 | eqid | ⊢ ; 1 5 = ; 1 5 | |
| 167 | 129 | mullidi | ⊢ ( 1 · 3 ) = 3 |
| 168 | 167 | oveq1i | ⊢ ( ( 1 · 3 ) + 1 ) = ( 3 + 1 ) |
| 169 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 170 | 168 169 | eqtri | ⊢ ( ( 1 · 3 ) + 1 ) = 4 |
| 171 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 172 | 165 22 15 166 15 22 170 171 | decmul1c | ⊢ ( ; 1 5 · 3 ) = ; 4 5 |
| 173 | 172 | a1i | ⊢ ( ⊤ → ( ; 1 5 · 3 ) = ; 4 5 ) |
| 174 | 173 | eqcomd | ⊢ ( ⊤ → ; 4 5 = ( ; 1 5 · 3 ) ) |
| 175 | 164 174 | eqtrd | ⊢ ( ⊤ → ( 5 · 9 ) = ( ; 1 5 · 3 ) ) |
| 176 | 155 130 | mulcld | ⊢ ( ⊤ → ( ; 1 5 · 3 ) ∈ ℂ ) |
| 177 | 67 | a1i | ⊢ ( ⊤ → 9 ∈ ℂ ) |
| 178 | 176 152 177 159 | divmuld | ⊢ ( ⊤ → ( ( ( ; 1 5 · 3 ) / 5 ) = 9 ↔ ( 5 · 9 ) = ( ; 1 5 · 3 ) ) ) |
| 179 | 175 178 | mpbird | ⊢ ( ⊤ → ( ( ; 1 5 · 3 ) / 5 ) = 9 ) |
| 180 | 160 179 | eqtr2d | ⊢ ( ⊤ → 9 = ( ; 1 5 / ( 5 / 3 ) ) ) |
| 181 | 151 154 180 | 3brtr3d | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 4 ) ≤ ( ; 1 5 / ( 5 / 3 ) ) ) |
| 182 | 20 44 | reexpcld | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 4 ) ∈ ℝ ) |
| 183 | 18 157 | elrpd | ⊢ ( ⊤ → 5 ∈ ℝ+ ) |
| 184 | 183 146 | rpdivcld | ⊢ ( ⊤ → ( 5 / 3 ) ∈ ℝ+ ) |
| 185 | 182 26 184 | lemuldivd | ⊢ ( ⊤ → ( ( ( ( 5 / 3 ) ↑ 4 ) · ( 5 / 3 ) ) ≤ ; 1 5 ↔ ( ( 5 / 3 ) ↑ 4 ) ≤ ( ; 1 5 / ( 5 / 3 ) ) ) ) |
| 186 | 181 185 | mpbird | ⊢ ( ⊤ → ( ( ( 5 / 3 ) ↑ 4 ) · ( 5 / 3 ) ) ≤ ; 1 5 ) |
| 187 | 46 186 | eqbrtrd | ⊢ ( ⊤ → ( ( 5 / 3 ) ↑ 5 ) ≤ ; 1 5 ) |
| 188 | 17 21 26 38 187 | letrd | ⊢ ( ⊤ → ( ( 2 logb 3 ) ↑ 5 ) ≤ ; 1 5 ) |
| 189 | 188 | mptru | ⊢ ( ( 2 logb 3 ) ↑ 5 ) ≤ ; 1 5 |