Metamath Proof Explorer
Description: Weak base ordering relationship for exponentiation, a deduction version.
(Contributed by metakunt, 22-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
leexp1ad.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
leexp1ad.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
leexp1ad.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
|
leexp1ad.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
leexp1ad.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
leexp1ad |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leexp1ad.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
leexp1ad.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
leexp1ad.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
leexp1ad.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 5 |
|
leexp1ad.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 6 |
|
leexp1a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 7 |
1 2 3 4 5 6
|
syl32anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |