Metamath Proof Explorer


Theorem leexp1ad

Description: Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses leexp1ad.1 ( 𝜑𝐴 ∈ ℝ )
leexp1ad.2 ( 𝜑𝐵 ∈ ℝ )
leexp1ad.3 ( 𝜑𝑁 ∈ ℕ0 )
leexp1ad.4 ( 𝜑 → 0 ≤ 𝐴 )
leexp1ad.5 ( 𝜑𝐴𝐵 )
Assertion leexp1ad ( 𝜑 → ( 𝐴𝑁 ) ≤ ( 𝐵𝑁 ) )

Proof

Step Hyp Ref Expression
1 leexp1ad.1 ( 𝜑𝐴 ∈ ℝ )
2 leexp1ad.2 ( 𝜑𝐵 ∈ ℝ )
3 leexp1ad.3 ( 𝜑𝑁 ∈ ℕ0 )
4 leexp1ad.4 ( 𝜑 → 0 ≤ 𝐴 )
5 leexp1ad.5 ( 𝜑𝐴𝐵 )
6 1 2 3 3jca ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) )
7 6 4 5 jca32 ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴𝐴𝐵 ) ) )
8 leexp1a ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴𝐴𝐵 ) ) → ( 𝐴𝑁 ) ≤ ( 𝐵𝑁 ) )
9 7 8 syl ( 𝜑 → ( 𝐴𝑁 ) ≤ ( 𝐵𝑁 ) )