Description: Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leexp1ad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| leexp1ad.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| leexp1ad.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| leexp1ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| leexp1ad.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | leexp1ad | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leexp1ad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | leexp1ad.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | leexp1ad.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | leexp1ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 5 | leexp1ad.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 6 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ) |
| 7 | 6 4 5 | jca32 | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 8 | leexp1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |