Description: Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leexp1ad.1 | |- ( ph -> A e. RR ) |
|
| leexp1ad.2 | |- ( ph -> B e. RR ) |
||
| leexp1ad.3 | |- ( ph -> N e. NN0 ) |
||
| leexp1ad.4 | |- ( ph -> 0 <_ A ) |
||
| leexp1ad.5 | |- ( ph -> A <_ B ) |
||
| Assertion | leexp1ad | |- ( ph -> ( A ^ N ) <_ ( B ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leexp1ad.1 | |- ( ph -> A e. RR ) |
|
| 2 | leexp1ad.2 | |- ( ph -> B e. RR ) |
|
| 3 | leexp1ad.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | leexp1ad.4 | |- ( ph -> 0 <_ A ) |
|
| 5 | leexp1ad.5 | |- ( ph -> A <_ B ) |
|
| 6 | 1 2 3 | 3jca | |- ( ph -> ( A e. RR /\ B e. RR /\ N e. NN0 ) ) |
| 7 | 6 4 5 | jca32 | |- ( ph -> ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ B ) ) ) |
| 8 | leexp1a | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ B ) ) -> ( A ^ N ) <_ ( B ^ N ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( A ^ N ) <_ ( B ^ N ) ) |