Metamath Proof Explorer


Theorem leexp1ad

Description: Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses leexp1ad.1
|- ( ph -> A e. RR )
leexp1ad.2
|- ( ph -> B e. RR )
leexp1ad.3
|- ( ph -> N e. NN0 )
leexp1ad.4
|- ( ph -> 0 <_ A )
leexp1ad.5
|- ( ph -> A <_ B )
Assertion leexp1ad
|- ( ph -> ( A ^ N ) <_ ( B ^ N ) )

Proof

Step Hyp Ref Expression
1 leexp1ad.1
 |-  ( ph -> A e. RR )
2 leexp1ad.2
 |-  ( ph -> B e. RR )
3 leexp1ad.3
 |-  ( ph -> N e. NN0 )
4 leexp1ad.4
 |-  ( ph -> 0 <_ A )
5 leexp1ad.5
 |-  ( ph -> A <_ B )
6 1 2 3 3jca
 |-  ( ph -> ( A e. RR /\ B e. RR /\ N e. NN0 ) )
7 6 4 5 jca32
 |-  ( ph -> ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ B ) ) )
8 leexp1a
 |-  ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ B ) ) -> ( A ^ N ) <_ ( B ^ N ) )
9 7 8 syl
 |-  ( ph -> ( A ^ N ) <_ ( B ^ N ) )