Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3lexlogpow5ineq5 | |- ( ( 2 logb 3 ) ^ 5 ) <_ ; 1 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1 | a1i | |- ( T. -> 2 e. RR ) |
| 3 | 2pos | |- 0 < 2 |
|
| 4 | 3 | a1i | |- ( T. -> 0 < 2 ) |
| 5 | 3re | |- 3 e. RR |
|
| 6 | 5 | a1i | |- ( T. -> 3 e. RR ) |
| 7 | 3pos | |- 0 < 3 |
|
| 8 | 7 | a1i | |- ( T. -> 0 < 3 ) |
| 9 | 1red | |- ( T. -> 1 e. RR ) |
|
| 10 | 1lt2 | |- 1 < 2 |
|
| 11 | 10 | a1i | |- ( T. -> 1 < 2 ) |
| 12 | 9 11 | ltned | |- ( T. -> 1 =/= 2 ) |
| 13 | 12 | necomd | |- ( T. -> 2 =/= 1 ) |
| 14 | 2 4 6 8 13 | relogbcld | |- ( T. -> ( 2 logb 3 ) e. RR ) |
| 15 | 5nn0 | |- 5 e. NN0 |
|
| 16 | 15 | a1i | |- ( T. -> 5 e. NN0 ) |
| 17 | 14 16 | reexpcld | |- ( T. -> ( ( 2 logb 3 ) ^ 5 ) e. RR ) |
| 18 | 16 | nn0red | |- ( T. -> 5 e. RR ) |
| 19 | 8 | gt0ne0d | |- ( T. -> 3 =/= 0 ) |
| 20 | 18 6 19 | redivcld | |- ( T. -> ( 5 / 3 ) e. RR ) |
| 21 | 20 16 | reexpcld | |- ( T. -> ( ( 5 / 3 ) ^ 5 ) e. RR ) |
| 22 | 1nn0 | |- 1 e. NN0 |
|
| 23 | 5nn | |- 5 e. NN |
|
| 24 | 22 23 | decnncl | |- ; 1 5 e. NN |
| 25 | 24 | a1i | |- ( T. -> ; 1 5 e. NN ) |
| 26 | 25 | nnred | |- ( T. -> ; 1 5 e. RR ) |
| 27 | 0red | |- ( T. -> 0 e. RR ) |
|
| 28 | 6 | rehalfcld | |- ( T. -> ( 3 / 2 ) e. RR ) |
| 29 | 6 2 8 4 | divgt0d | |- ( T. -> 0 < ( 3 / 2 ) ) |
| 30 | 3lexlogpow2ineq1 | |- ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) |
|
| 31 | 30 | simpli | |- ( 3 / 2 ) < ( 2 logb 3 ) |
| 32 | 31 | a1i | |- ( T. -> ( 3 / 2 ) < ( 2 logb 3 ) ) |
| 33 | 27 28 14 29 32 | lttrd | |- ( T. -> 0 < ( 2 logb 3 ) ) |
| 34 | 27 14 33 | ltled | |- ( T. -> 0 <_ ( 2 logb 3 ) ) |
| 35 | 30 | simpri | |- ( 2 logb 3 ) < ( 5 / 3 ) |
| 36 | 35 | a1i | |- ( T. -> ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 37 | 14 20 36 | ltled | |- ( T. -> ( 2 logb 3 ) <_ ( 5 / 3 ) ) |
| 38 | 14 20 16 34 37 | leexp1ad | |- ( T. -> ( ( 2 logb 3 ) ^ 5 ) <_ ( ( 5 / 3 ) ^ 5 ) ) |
| 39 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 40 | 39 | a1i | |- ( T. -> 5 = ( 4 + 1 ) ) |
| 41 | 40 | oveq2d | |- ( T. -> ( ( 5 / 3 ) ^ 5 ) = ( ( 5 / 3 ) ^ ( 4 + 1 ) ) ) |
| 42 | 20 | recnd | |- ( T. -> ( 5 / 3 ) e. CC ) |
| 43 | 4nn0 | |- 4 e. NN0 |
|
| 44 | 43 | a1i | |- ( T. -> 4 e. NN0 ) |
| 45 | 42 44 | expp1d | |- ( T. -> ( ( 5 / 3 ) ^ ( 4 + 1 ) ) = ( ( ( 5 / 3 ) ^ 4 ) x. ( 5 / 3 ) ) ) |
| 46 | 41 45 | eqtrd | |- ( T. -> ( ( 5 / 3 ) ^ 5 ) = ( ( ( 5 / 3 ) ^ 4 ) x. ( 5 / 3 ) ) ) |
| 47 | 6nn0 | |- 6 e. NN0 |
|
| 48 | 2nn0 | |- 2 e. NN0 |
|
| 49 | 47 48 | deccl | |- ; 6 2 e. NN0 |
| 50 | 7nn0 | |- 7 e. NN0 |
|
| 51 | 50 48 | deccl | |- ; 7 2 e. NN0 |
| 52 | 9nn0 | |- 9 e. NN0 |
|
| 53 | 9re | |- 9 e. RR |
|
| 54 | 53 | a1i | |- ( T. -> 9 e. RR ) |
| 55 | 5lt9 | |- 5 < 9 |
|
| 56 | 55 | a1i | |- ( T. -> 5 < 9 ) |
| 57 | 18 54 56 | ltled | |- ( T. -> 5 <_ 9 ) |
| 58 | 57 | mptru | |- 5 <_ 9 |
| 59 | 2lt10 | |- 2 < ; 1 0 |
|
| 60 | 6lt7 | |- 6 < 7 |
|
| 61 | 47 50 48 48 59 60 | decltc | |- ; 6 2 < ; 7 2 |
| 62 | 49 51 15 52 58 61 | decleh | |- ; ; 6 2 5 <_ ; ; 7 2 9 |
| 63 | 62 | a1i | |- ( T. -> ; ; 6 2 5 <_ ; ; 7 2 9 ) |
| 64 | 8nn0 | |- 8 e. NN0 |
|
| 65 | eqid | |- ; 8 1 = ; 8 1 |
|
| 66 | 0nn0 | |- 0 e. NN0 |
|
| 67 | 9cn | |- 9 e. CC |
|
| 68 | 8cn | |- 8 e. CC |
|
| 69 | 9t8e72 | |- ( 9 x. 8 ) = ; 7 2 |
|
| 70 | 67 68 69 | mulcomli | |- ( 8 x. 9 ) = ; 7 2 |
| 71 | 2cn | |- 2 e. CC |
|
| 72 | 71 | addridi | |- ( 2 + 0 ) = 2 |
| 73 | 50 48 66 70 72 | decaddi | |- ( ( 8 x. 9 ) + 0 ) = ; 7 2 |
| 74 | ax-1cn | |- 1 e. CC |
|
| 75 | 67 | mulridi | |- ( 9 x. 1 ) = 9 |
| 76 | 52 | dec0h | |- 9 = ; 0 9 |
| 77 | 76 | eqcomi | |- ; 0 9 = 9 |
| 78 | 75 77 | eqtr4i | |- ( 9 x. 1 ) = ; 0 9 |
| 79 | 67 74 78 | mulcomli | |- ( 1 x. 9 ) = ; 0 9 |
| 80 | 52 64 22 65 52 66 73 79 | decmul1c | |- ( ; 8 1 x. 9 ) = ; ; 7 2 9 |
| 81 | 80 | a1i | |- ( T. -> ( ; 8 1 x. 9 ) = ; ; 7 2 9 ) |
| 82 | 81 | eqcomd | |- ( T. -> ; ; 7 2 9 = ( ; 8 1 x. 9 ) ) |
| 83 | 63 82 | breqtrd | |- ( T. -> ; ; 6 2 5 <_ ( ; 8 1 x. 9 ) ) |
| 84 | eqid | |- 4 = 4 |
|
| 85 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 86 | 84 85 | eqtr4i | |- 4 = ( 2 + 2 ) |
| 87 | 86 | a1i | |- ( T. -> 4 = ( 2 + 2 ) ) |
| 88 | 87 | oveq2d | |- ( T. -> ( 5 ^ 4 ) = ( 5 ^ ( 2 + 2 ) ) ) |
| 89 | 23 | nncni | |- 5 e. CC |
| 90 | 89 | a1i | |- ( T. -> 5 e. CC ) |
| 91 | 48 | a1i | |- ( T. -> 2 e. NN0 ) |
| 92 | 90 91 91 | expaddd | |- ( T. -> ( 5 ^ ( 2 + 2 ) ) = ( ( 5 ^ 2 ) x. ( 5 ^ 2 ) ) ) |
| 93 | 89 | sqvali | |- ( 5 ^ 2 ) = ( 5 x. 5 ) |
| 94 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
| 95 | 93 94 | eqtri | |- ( 5 ^ 2 ) = ; 2 5 |
| 96 | 95 | a1i | |- ( T. -> ( 5 ^ 2 ) = ; 2 5 ) |
| 97 | 96 96 | oveq12d | |- ( T. -> ( ( 5 ^ 2 ) x. ( 5 ^ 2 ) ) = ( ; 2 5 x. ; 2 5 ) ) |
| 98 | 88 92 97 | 3eqtrd | |- ( T. -> ( 5 ^ 4 ) = ( ; 2 5 x. ; 2 5 ) ) |
| 99 | 48 15 | deccl | |- ; 2 5 e. NN0 |
| 100 | eqid | |- ; 2 5 = ; 2 5 |
|
| 101 | 22 48 | deccl | |- ; 1 2 e. NN0 |
| 102 | 48 | dec0h | |- 2 = ; 0 2 |
| 103 | eqid | |- ; 1 2 = ; 1 2 |
|
| 104 | 99 | nn0cni | |- ; 2 5 e. CC |
| 105 | 104 | mul02i | |- ( 0 x. ; 2 5 ) = 0 |
| 106 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 107 | 89 74 106 | addcomli | |- ( 1 + 5 ) = 6 |
| 108 | 105 107 | oveq12i | |- ( ( 0 x. ; 2 5 ) + ( 1 + 5 ) ) = ( 0 + 6 ) |
| 109 | 6cn | |- 6 e. CC |
|
| 110 | 109 | addlidi | |- ( 0 + 6 ) = 6 |
| 111 | 108 110 | eqtri | |- ( ( 0 x. ; 2 5 ) + ( 1 + 5 ) ) = 6 |
| 112 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 113 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 114 | 112 113 | oveq12i | |- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 115 | 4p1e5 | |- ( 4 + 1 ) = 5 |
|
| 116 | 114 115 | eqtri | |- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = 5 |
| 117 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 118 | 89 71 117 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
| 119 | 71 | addlidi | |- ( 0 + 2 ) = 2 |
| 120 | 22 66 48 118 119 | decaddi | |- ( ( 2 x. 5 ) + 2 ) = ; 1 2 |
| 121 | 48 15 66 48 100 102 48 48 22 116 120 | decma2c | |- ( ( 2 x. ; 2 5 ) + 2 ) = ; 5 2 |
| 122 | 66 48 22 48 102 103 99 48 15 111 121 | decmac | |- ( ( 2 x. ; 2 5 ) + ; 1 2 ) = ; 6 2 |
| 123 | 22 66 48 117 119 | decaddi | |- ( ( 5 x. 2 ) + 2 ) = ; 1 2 |
| 124 | 15 48 15 100 15 48 123 94 | decmul2c | |- ( 5 x. ; 2 5 ) = ; ; 1 2 5 |
| 125 | 99 48 15 100 15 101 122 124 | decmul1c | |- ( ; 2 5 x. ; 2 5 ) = ; ; 6 2 5 |
| 126 | 125 | a1i | |- ( T. -> ( ; 2 5 x. ; 2 5 ) = ; ; 6 2 5 ) |
| 127 | 98 126 | eqtr2d | |- ( T. -> ; ; 6 2 5 = ( 5 ^ 4 ) ) |
| 128 | 87 | oveq2d | |- ( T. -> ( 3 ^ 4 ) = ( 3 ^ ( 2 + 2 ) ) ) |
| 129 | 3cn | |- 3 e. CC |
|
| 130 | 129 | a1i | |- ( T. -> 3 e. CC ) |
| 131 | 130 91 91 | expaddd | |- ( T. -> ( 3 ^ ( 2 + 2 ) ) = ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) ) |
| 132 | 129 | sqvali | |- ( 3 ^ 2 ) = ( 3 x. 3 ) |
| 133 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 134 | 132 133 | eqtri | |- ( 3 ^ 2 ) = 9 |
| 135 | 134 | a1i | |- ( T. -> ( 3 ^ 2 ) = 9 ) |
| 136 | 135 135 | oveq12d | |- ( T. -> ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) = ( 9 x. 9 ) ) |
| 137 | 9t9e81 | |- ( 9 x. 9 ) = ; 8 1 |
|
| 138 | 137 | a1i | |- ( T. -> ( 9 x. 9 ) = ; 8 1 ) |
| 139 | 136 138 | eqtrd | |- ( T. -> ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) = ; 8 1 ) |
| 140 | 128 131 139 | 3eqtrd | |- ( T. -> ( 3 ^ 4 ) = ; 8 1 ) |
| 141 | 140 | eqcomd | |- ( T. -> ; 8 1 = ( 3 ^ 4 ) ) |
| 142 | 141 | oveq1d | |- ( T. -> ( ; 8 1 x. 9 ) = ( ( 3 ^ 4 ) x. 9 ) ) |
| 143 | 83 127 142 | 3brtr3d | |- ( T. -> ( 5 ^ 4 ) <_ ( ( 3 ^ 4 ) x. 9 ) ) |
| 144 | 18 44 | reexpcld | |- ( T. -> ( 5 ^ 4 ) e. RR ) |
| 145 | 3rp | |- 3 e. RR+ |
|
| 146 | 145 | a1i | |- ( T. -> 3 e. RR+ ) |
| 147 | 4z | |- 4 e. ZZ |
|
| 148 | 147 | a1i | |- ( T. -> 4 e. ZZ ) |
| 149 | 146 148 | rpexpcld | |- ( T. -> ( 3 ^ 4 ) e. RR+ ) |
| 150 | 144 54 149 | ledivmuld | |- ( T. -> ( ( ( 5 ^ 4 ) / ( 3 ^ 4 ) ) <_ 9 <-> ( 5 ^ 4 ) <_ ( ( 3 ^ 4 ) x. 9 ) ) ) |
| 151 | 143 150 | mpbird | |- ( T. -> ( ( 5 ^ 4 ) / ( 3 ^ 4 ) ) <_ 9 ) |
| 152 | 18 | recnd | |- ( T. -> 5 e. CC ) |
| 153 | 152 130 19 44 | expdivd | |- ( T. -> ( ( 5 / 3 ) ^ 4 ) = ( ( 5 ^ 4 ) / ( 3 ^ 4 ) ) ) |
| 154 | 153 | eqcomd | |- ( T. -> ( ( 5 ^ 4 ) / ( 3 ^ 4 ) ) = ( ( 5 / 3 ) ^ 4 ) ) |
| 155 | 26 | recnd | |- ( T. -> ; 1 5 e. CC ) |
| 156 | 23 | nngt0i | |- 0 < 5 |
| 157 | 156 | a1i | |- ( T. -> 0 < 5 ) |
| 158 | 27 157 | ltned | |- ( T. -> 0 =/= 5 ) |
| 159 | 158 | necomd | |- ( T. -> 5 =/= 0 ) |
| 160 | 155 152 130 159 19 | divdiv2d | |- ( T. -> ( ; 1 5 / ( 5 / 3 ) ) = ( ( ; 1 5 x. 3 ) / 5 ) ) |
| 161 | 5cn | |- 5 e. CC |
|
| 162 | 9t5e45 | |- ( 9 x. 5 ) = ; 4 5 |
|
| 163 | 67 161 162 | mulcomli | |- ( 5 x. 9 ) = ; 4 5 |
| 164 | 163 | a1i | |- ( T. -> ( 5 x. 9 ) = ; 4 5 ) |
| 165 | 3nn0 | |- 3 e. NN0 |
|
| 166 | eqid | |- ; 1 5 = ; 1 5 |
|
| 167 | 129 | mullidi | |- ( 1 x. 3 ) = 3 |
| 168 | 167 | oveq1i | |- ( ( 1 x. 3 ) + 1 ) = ( 3 + 1 ) |
| 169 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 170 | 168 169 | eqtri | |- ( ( 1 x. 3 ) + 1 ) = 4 |
| 171 | 5t3e15 | |- ( 5 x. 3 ) = ; 1 5 |
|
| 172 | 165 22 15 166 15 22 170 171 | decmul1c | |- ( ; 1 5 x. 3 ) = ; 4 5 |
| 173 | 172 | a1i | |- ( T. -> ( ; 1 5 x. 3 ) = ; 4 5 ) |
| 174 | 173 | eqcomd | |- ( T. -> ; 4 5 = ( ; 1 5 x. 3 ) ) |
| 175 | 164 174 | eqtrd | |- ( T. -> ( 5 x. 9 ) = ( ; 1 5 x. 3 ) ) |
| 176 | 155 130 | mulcld | |- ( T. -> ( ; 1 5 x. 3 ) e. CC ) |
| 177 | 67 | a1i | |- ( T. -> 9 e. CC ) |
| 178 | 176 152 177 159 | divmuld | |- ( T. -> ( ( ( ; 1 5 x. 3 ) / 5 ) = 9 <-> ( 5 x. 9 ) = ( ; 1 5 x. 3 ) ) ) |
| 179 | 175 178 | mpbird | |- ( T. -> ( ( ; 1 5 x. 3 ) / 5 ) = 9 ) |
| 180 | 160 179 | eqtr2d | |- ( T. -> 9 = ( ; 1 5 / ( 5 / 3 ) ) ) |
| 181 | 151 154 180 | 3brtr3d | |- ( T. -> ( ( 5 / 3 ) ^ 4 ) <_ ( ; 1 5 / ( 5 / 3 ) ) ) |
| 182 | 20 44 | reexpcld | |- ( T. -> ( ( 5 / 3 ) ^ 4 ) e. RR ) |
| 183 | 18 157 | elrpd | |- ( T. -> 5 e. RR+ ) |
| 184 | 183 146 | rpdivcld | |- ( T. -> ( 5 / 3 ) e. RR+ ) |
| 185 | 182 26 184 | lemuldivd | |- ( T. -> ( ( ( ( 5 / 3 ) ^ 4 ) x. ( 5 / 3 ) ) <_ ; 1 5 <-> ( ( 5 / 3 ) ^ 4 ) <_ ( ; 1 5 / ( 5 / 3 ) ) ) ) |
| 186 | 181 185 | mpbird | |- ( T. -> ( ( ( 5 / 3 ) ^ 4 ) x. ( 5 / 3 ) ) <_ ; 1 5 ) |
| 187 | 46 186 | eqbrtrd | |- ( T. -> ( ( 5 / 3 ) ^ 5 ) <_ ; 1 5 ) |
| 188 | 17 21 26 38 187 | letrd | |- ( T. -> ( ( 2 logb 3 ) ^ 5 ) <_ ; 1 5 ) |
| 189 | 188 | mptru | |- ( ( 2 logb 3 ) ^ 5 ) <_ ; 1 5 |