| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tru |
|- T. |
| 2 |
|
8lt9 |
|- 8 < 9 |
| 3 |
|
2z |
|- 2 e. ZZ |
| 4 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 5 |
3 4
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 6 |
|
8nn |
|- 8 e. NN |
| 7 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 8 |
6 7
|
ax-mp |
|- 8 e. RR+ |
| 9 |
|
9nn |
|- 9 e. NN |
| 10 |
|
nnrp |
|- ( 9 e. NN -> 9 e. RR+ ) |
| 11 |
9 10
|
ax-mp |
|- 9 e. RR+ |
| 12 |
5 8 11
|
3pm3.2i |
|- ( 2 e. ( ZZ>= ` 2 ) /\ 8 e. RR+ /\ 9 e. RR+ ) |
| 13 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ 8 e. RR+ /\ 9 e. RR+ ) -> ( 8 < 9 <-> ( 2 logb 8 ) < ( 2 logb 9 ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( 8 < 9 <-> ( 2 logb 8 ) < ( 2 logb 9 ) ) |
| 15 |
2 14
|
mpbi |
|- ( 2 logb 8 ) < ( 2 logb 9 ) |
| 16 |
15
|
a1i |
|- ( T. -> ( 2 logb 8 ) < ( 2 logb 9 ) ) |
| 17 |
|
eqid |
|- 8 = 8 |
| 18 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
| 19 |
17 18
|
eqtr4i |
|- 8 = ( 2 ^ 3 ) |
| 20 |
19
|
a1i |
|- ( T. -> 8 = ( 2 ^ 3 ) ) |
| 21 |
20
|
oveq2d |
|- ( T. -> ( 2 logb 8 ) = ( 2 logb ( 2 ^ 3 ) ) ) |
| 22 |
|
2rp |
|- 2 e. RR+ |
| 23 |
22
|
a1i |
|- ( T. -> 2 e. RR+ ) |
| 24 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 25 |
|
1lt2 |
|- 1 < 2 |
| 26 |
25
|
a1i |
|- ( T. -> 1 < 2 ) |
| 27 |
24 26
|
ltned |
|- ( T. -> 1 =/= 2 ) |
| 28 |
27
|
necomd |
|- ( T. -> 2 =/= 1 ) |
| 29 |
|
3z |
|- 3 e. ZZ |
| 30 |
29
|
a1i |
|- ( T. -> 3 e. ZZ ) |
| 31 |
23 28 30
|
relogbexpd |
|- ( T. -> ( 2 logb ( 2 ^ 3 ) ) = 3 ) |
| 32 |
21 31
|
eqtrd |
|- ( T. -> ( 2 logb 8 ) = 3 ) |
| 33 |
|
eqid |
|- 9 = 9 |
| 34 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
| 35 |
33 34
|
eqtr4i |
|- 9 = ( 3 ^ 2 ) |
| 36 |
35
|
a1i |
|- ( T. -> 9 = ( 3 ^ 2 ) ) |
| 37 |
36
|
oveq2d |
|- ( T. -> ( 2 logb 9 ) = ( 2 logb ( 3 ^ 2 ) ) ) |
| 38 |
16 32 37
|
3brtr3d |
|- ( T. -> 3 < ( 2 logb ( 3 ^ 2 ) ) ) |
| 39 |
|
3re |
|- 3 e. RR |
| 40 |
39
|
a1i |
|- ( T. -> 3 e. RR ) |
| 41 |
40
|
recnd |
|- ( T. -> 3 e. CC ) |
| 42 |
|
2re |
|- 2 e. RR |
| 43 |
42
|
a1i |
|- ( T. -> 2 e. RR ) |
| 44 |
43
|
recnd |
|- ( T. -> 2 e. CC ) |
| 45 |
|
2pos |
|- 0 < 2 |
| 46 |
45
|
a1i |
|- ( T. -> 0 < 2 ) |
| 47 |
46
|
gt0ne0d |
|- ( T. -> 2 =/= 0 ) |
| 48 |
41 44 47
|
divcan1d |
|- ( T. -> ( ( 3 / 2 ) x. 2 ) = 3 ) |
| 49 |
48
|
eqcomd |
|- ( T. -> 3 = ( ( 3 / 2 ) x. 2 ) ) |
| 50 |
|
3pos |
|- 0 < 3 |
| 51 |
50
|
a1i |
|- ( T. -> 0 < 3 ) |
| 52 |
40 51
|
elrpd |
|- ( T. -> 3 e. RR+ ) |
| 53 |
3
|
a1i |
|- ( T. -> 2 e. ZZ ) |
| 54 |
23 28 52 53
|
relogbzexpd |
|- ( T. -> ( 2 logb ( 3 ^ 2 ) ) = ( 2 x. ( 2 logb 3 ) ) ) |
| 55 |
43 46 40 51 28
|
relogbcld |
|- ( T. -> ( 2 logb 3 ) e. RR ) |
| 56 |
55
|
recnd |
|- ( T. -> ( 2 logb 3 ) e. CC ) |
| 57 |
44 56
|
mulcomd |
|- ( T. -> ( 2 x. ( 2 logb 3 ) ) = ( ( 2 logb 3 ) x. 2 ) ) |
| 58 |
54 57
|
eqtrd |
|- ( T. -> ( 2 logb ( 3 ^ 2 ) ) = ( ( 2 logb 3 ) x. 2 ) ) |
| 59 |
38 49 58
|
3brtr3d |
|- ( T. -> ( ( 3 / 2 ) x. 2 ) < ( ( 2 logb 3 ) x. 2 ) ) |
| 60 |
40
|
rehalfcld |
|- ( T. -> ( 3 / 2 ) e. RR ) |
| 61 |
60 55 23
|
ltmul1d |
|- ( T. -> ( ( 3 / 2 ) < ( 2 logb 3 ) <-> ( ( 3 / 2 ) x. 2 ) < ( ( 2 logb 3 ) x. 2 ) ) ) |
| 62 |
59 61
|
mpbird |
|- ( T. -> ( 3 / 2 ) < ( 2 logb 3 ) ) |
| 63 |
|
2nn0 |
|- 2 e. NN0 |
| 64 |
|
3nn0 |
|- 3 e. NN0 |
| 65 |
|
7nn0 |
|- 7 e. NN0 |
| 66 |
|
7lt10 |
|- 7 < ; 1 0 |
| 67 |
|
2lt3 |
|- 2 < 3 |
| 68 |
63 64 65 63 66 67
|
decltc |
|- ; 2 7 < ; 3 2 |
| 69 |
|
7nn |
|- 7 e. NN |
| 70 |
63 69
|
decnncl |
|- ; 2 7 e. NN |
| 71 |
|
nnrp |
|- ( ; 2 7 e. NN -> ; 2 7 e. RR+ ) |
| 72 |
70 71
|
ax-mp |
|- ; 2 7 e. RR+ |
| 73 |
|
2nn |
|- 2 e. NN |
| 74 |
64 73
|
decnncl |
|- ; 3 2 e. NN |
| 75 |
|
nnrp |
|- ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) |
| 76 |
74 75
|
ax-mp |
|- ; 3 2 e. RR+ |
| 77 |
5 72 76
|
3pm3.2i |
|- ( 2 e. ( ZZ>= ` 2 ) /\ ; 2 7 e. RR+ /\ ; 3 2 e. RR+ ) |
| 78 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ; 2 7 e. RR+ /\ ; 3 2 e. RR+ ) -> ( ; 2 7 < ; 3 2 <-> ( 2 logb ; 2 7 ) < ( 2 logb ; 3 2 ) ) ) |
| 79 |
77 78
|
ax-mp |
|- ( ; 2 7 < ; 3 2 <-> ( 2 logb ; 2 7 ) < ( 2 logb ; 3 2 ) ) |
| 80 |
68 79
|
mpbi |
|- ( 2 logb ; 2 7 ) < ( 2 logb ; 3 2 ) |
| 81 |
80
|
a1i |
|- ( T. -> ( 2 logb ; 2 7 ) < ( 2 logb ; 3 2 ) ) |
| 82 |
|
eqid |
|- ; 3 2 = ; 3 2 |
| 83 |
|
2exp5 |
|- ( 2 ^ 5 ) = ; 3 2 |
| 84 |
82 83
|
eqtr4i |
|- ; 3 2 = ( 2 ^ 5 ) |
| 85 |
84
|
a1i |
|- ( T. -> ; 3 2 = ( 2 ^ 5 ) ) |
| 86 |
85
|
oveq2d |
|- ( T. -> ( 2 logb ; 3 2 ) = ( 2 logb ( 2 ^ 5 ) ) ) |
| 87 |
81 86
|
breqtrd |
|- ( T. -> ( 2 logb ; 2 7 ) < ( 2 logb ( 2 ^ 5 ) ) ) |
| 88 |
|
eqid |
|- ; 2 7 = ; 2 7 |
| 89 |
|
3exp3 |
|- ( 3 ^ 3 ) = ; 2 7 |
| 90 |
88 89
|
eqtr4i |
|- ; 2 7 = ( 3 ^ 3 ) |
| 91 |
90
|
a1i |
|- ( T. -> ; 2 7 = ( 3 ^ 3 ) ) |
| 92 |
91
|
oveq2d |
|- ( T. -> ( 2 logb ; 2 7 ) = ( 2 logb ( 3 ^ 3 ) ) ) |
| 93 |
23 28 52 30
|
relogbzexpd |
|- ( T. -> ( 2 logb ( 3 ^ 3 ) ) = ( 3 x. ( 2 logb 3 ) ) ) |
| 94 |
92 93
|
eqtrd |
|- ( T. -> ( 2 logb ; 2 7 ) = ( 3 x. ( 2 logb 3 ) ) ) |
| 95 |
41 56
|
mulcomd |
|- ( T. -> ( 3 x. ( 2 logb 3 ) ) = ( ( 2 logb 3 ) x. 3 ) ) |
| 96 |
94 95
|
eqtrd |
|- ( T. -> ( 2 logb ; 2 7 ) = ( ( 2 logb 3 ) x. 3 ) ) |
| 97 |
|
5re |
|- 5 e. RR |
| 98 |
97
|
a1i |
|- ( T. -> 5 e. RR ) |
| 99 |
98
|
recnd |
|- ( T. -> 5 e. CC ) |
| 100 |
51
|
gt0ne0d |
|- ( T. -> 3 =/= 0 ) |
| 101 |
99 41 100
|
divcan1d |
|- ( T. -> ( ( 5 / 3 ) x. 3 ) = 5 ) |
| 102 |
|
5nn |
|- 5 e. NN |
| 103 |
102
|
a1i |
|- ( T. -> 5 e. NN ) |
| 104 |
103
|
nnzd |
|- ( T. -> 5 e. ZZ ) |
| 105 |
23 28 104
|
relogbexpd |
|- ( T. -> ( 2 logb ( 2 ^ 5 ) ) = 5 ) |
| 106 |
105
|
eqcomd |
|- ( T. -> 5 = ( 2 logb ( 2 ^ 5 ) ) ) |
| 107 |
101 106
|
eqtrd |
|- ( T. -> ( ( 5 / 3 ) x. 3 ) = ( 2 logb ( 2 ^ 5 ) ) ) |
| 108 |
107
|
eqcomd |
|- ( T. -> ( 2 logb ( 2 ^ 5 ) ) = ( ( 5 / 3 ) x. 3 ) ) |
| 109 |
87 96 108
|
3brtr3d |
|- ( T. -> ( ( 2 logb 3 ) x. 3 ) < ( ( 5 / 3 ) x. 3 ) ) |
| 110 |
98 40 100
|
redivcld |
|- ( T. -> ( 5 / 3 ) e. RR ) |
| 111 |
55 110 52
|
ltmul1d |
|- ( T. -> ( ( 2 logb 3 ) < ( 5 / 3 ) <-> ( ( 2 logb 3 ) x. 3 ) < ( ( 5 / 3 ) x. 3 ) ) ) |
| 112 |
109 111
|
mpbird |
|- ( T. -> ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 113 |
62 112
|
jca |
|- ( T. -> ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) ) |
| 114 |
1 113
|
ax-mp |
|- ( ( 3 / 2 ) < ( 2 logb 3 ) /\ ( 2 logb 3 ) < ( 5 / 3 ) ) |