Metamath Proof Explorer


Theorem 7lt10

Description: 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 7lt10
|- 7 < ; 1 0

Proof

Step Hyp Ref Expression
1 7lt8
 |-  7 < 8
2 8lt10
 |-  8 < ; 1 0
3 7re
 |-  7 e. RR
4 8re
 |-  8 e. RR
5 10re
 |-  ; 1 0 e. RR
6 3 4 5 lttri
 |-  ( ( 7 < 8 /\ 8 < ; 1 0 ) -> 7 < ; 1 0 )
7 1 2 6 mp2an
 |-  7 < ; 1 0