Metamath Proof Explorer


Theorem relogbzexpd

Description: Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbzexpd.1
|- ( ph -> B e. RR+ )
relogbzexpd.2
|- ( ph -> B =/= 1 )
relogbzexpd.3
|- ( ph -> C e. RR+ )
relogbzexpd.4
|- ( ph -> N e. ZZ )
Assertion relogbzexpd
|- ( ph -> ( B logb ( C ^ N ) ) = ( N x. ( B logb C ) ) )

Proof

Step Hyp Ref Expression
1 relogbzexpd.1
 |-  ( ph -> B e. RR+ )
2 relogbzexpd.2
 |-  ( ph -> B =/= 1 )
3 relogbzexpd.3
 |-  ( ph -> C e. RR+ )
4 relogbzexpd.4
 |-  ( ph -> N e. ZZ )
5 1 rpcnd
 |-  ( ph -> B e. CC )
6 1 rpne0d
 |-  ( ph -> B =/= 0 )
7 6 2 nelprd
 |-  ( ph -> -. B e. { 0 , 1 } )
8 5 7 eldifd
 |-  ( ph -> B e. ( CC \ { 0 , 1 } ) )
9 8 3 4 3jca
 |-  ( ph -> ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ N e. ZZ ) )
10 relogbzexp
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ N e. ZZ ) -> ( B logb ( C ^ N ) ) = ( N x. ( B logb C ) ) )
11 9 10 syl
 |-  ( ph -> ( B logb ( C ^ N ) ) = ( N x. ( B logb C ) ) )