Description: Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version. (Contributed by metakunt, 22-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relogbzexpd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
relogbzexpd.2 | ⊢ ( 𝜑 → 𝐵 ≠ 1 ) | ||
relogbzexpd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
relogbzexpd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
Assertion | relogbzexpd | ⊢ ( 𝜑 → ( 𝐵 logb ( 𝐶 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogbzexpd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
2 | relogbzexpd.2 | ⊢ ( 𝜑 → 𝐵 ≠ 1 ) | |
3 | relogbzexpd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
4 | relogbzexpd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
5 | 1 | rpcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
6 | 1 | rpne0d | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
7 | 6 2 | nelprd | ⊢ ( 𝜑 → ¬ 𝐵 ∈ { 0 , 1 } ) |
8 | 5 7 | eldifd | ⊢ ( 𝜑 → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
9 | 8 3 4 | 3jca | ⊢ ( 𝜑 → ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) ) |
10 | relogbzexp | ⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐵 logb ( 𝐶 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) ) | |
11 | 9 10 | syl | ⊢ ( 𝜑 → ( 𝐵 logb ( 𝐶 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) ) |