Metamath Proof Explorer


Theorem relogbzexpd

Description: Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbzexpd.1 ( 𝜑𝐵 ∈ ℝ+ )
relogbzexpd.2 ( 𝜑𝐵 ≠ 1 )
relogbzexpd.3 ( 𝜑𝐶 ∈ ℝ+ )
relogbzexpd.4 ( 𝜑𝑁 ∈ ℤ )
Assertion relogbzexpd ( 𝜑 → ( 𝐵 logb ( 𝐶𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 relogbzexpd.1 ( 𝜑𝐵 ∈ ℝ+ )
2 relogbzexpd.2 ( 𝜑𝐵 ≠ 1 )
3 relogbzexpd.3 ( 𝜑𝐶 ∈ ℝ+ )
4 relogbzexpd.4 ( 𝜑𝑁 ∈ ℤ )
5 1 rpcnd ( 𝜑𝐵 ∈ ℂ )
6 1 rpne0d ( 𝜑𝐵 ≠ 0 )
7 6 2 nelprd ( 𝜑 → ¬ 𝐵 ∈ { 0 , 1 } )
8 5 7 eldifd ( 𝜑𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) )
9 8 3 4 3jca ( 𝜑 → ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+𝑁 ∈ ℤ ) )
10 relogbzexp ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐵 logb ( 𝐶𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) )
11 9 10 syl ( 𝜑 → ( 𝐵 logb ( 𝐶𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) )