| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogbzexpd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 2 |
|
relogbzexpd.2 |
⊢ ( 𝜑 → 𝐵 ≠ 1 ) |
| 3 |
|
relogbzexpd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 4 |
|
relogbzexpd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 5 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 |
1
|
rpne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 7 |
6 2
|
nelprd |
⊢ ( 𝜑 → ¬ 𝐵 ∈ { 0 , 1 } ) |
| 8 |
5 7
|
eldifd |
⊢ ( 𝜑 → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
| 9 |
8 3 4
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) ) |
| 10 |
|
relogbzexp |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐵 logb ( 𝐶 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝐵 logb ( 𝐶 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝐵 logb 𝐶 ) ) ) |