Metamath Proof Explorer


Theorem logblebd

Description: The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses logblebd.1 ( 𝜑𝐵 ∈ ℤ )
logblebd.2 ( 𝜑 → 2 ≤ 𝐵 )
logblebd.3 ( 𝜑𝑋 ∈ ℝ )
logblebd.4 ( 𝜑 → 0 < 𝑋 )
logblebd.5 ( 𝜑𝑌 ∈ ℝ )
logblebd.6 ( 𝜑 → 0 < 𝑌 )
logblebd.7 ( 𝜑𝑋𝑌 )
Assertion logblebd ( 𝜑 → ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) )

Proof

Step Hyp Ref Expression
1 logblebd.1 ( 𝜑𝐵 ∈ ℤ )
2 logblebd.2 ( 𝜑 → 2 ≤ 𝐵 )
3 logblebd.3 ( 𝜑𝑋 ∈ ℝ )
4 logblebd.4 ( 𝜑 → 0 < 𝑋 )
5 logblebd.5 ( 𝜑𝑌 ∈ ℝ )
6 logblebd.6 ( 𝜑 → 0 < 𝑌 )
7 logblebd.7 ( 𝜑𝑋𝑌 )
8 1 2 jca ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) )
9 2z 2 ∈ ℤ
10 eluz1 ( 2 ∈ ℤ → ( 𝐵 ∈ ( ℤ ‘ 2 ) ↔ ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) ) )
11 9 10 ax-mp ( 𝐵 ∈ ( ℤ ‘ 2 ) ↔ ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) )
12 8 11 sylibr ( 𝜑𝐵 ∈ ( ℤ ‘ 2 ) )
13 3 4 elrpd ( 𝜑𝑋 ∈ ℝ+ )
14 5 6 elrpd ( 𝜑𝑌 ∈ ℝ+ )
15 12 13 14 3jca ( 𝜑 → ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+ ) )
16 logbleb ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+ ) → ( 𝑋𝑌 ↔ ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) ) )
17 15 16 syl ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) ) )
18 7 17 mpbid ( 𝜑 → ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) )