Step |
Hyp |
Ref |
Expression |
1 |
|
logblebd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
2 |
|
logblebd.2 |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
3 |
|
logblebd.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
4 |
|
logblebd.4 |
⊢ ( 𝜑 → 0 < 𝑋 ) |
5 |
|
logblebd.5 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
6 |
|
logblebd.6 |
⊢ ( 𝜑 → 0 < 𝑌 ) |
7 |
|
logblebd.7 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
8 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) ) |
9 |
|
2z |
⊢ 2 ∈ ℤ |
10 |
|
eluz1 |
⊢ ( 2 ∈ ℤ → ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵 ) ) |
12 |
8 11
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) |
13 |
3 4
|
elrpd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
14 |
5 6
|
elrpd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
15 |
12 13 14
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+ ) ) |
16 |
|
logbleb |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) ) ) |
18 |
7 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 logb 𝑋 ) ≤ ( 𝐵 logb 𝑌 ) ) |