Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Logarithm inequalities
3lexlogpow2ineq1
Next ⟩
3lexlogpow2ineq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
3lexlogpow2ineq1
Description:
Result for bound in AKS inequality lemma.
(Contributed by
metakunt
, 21-Aug-2024)
Ref
Expression
Assertion
3lexlogpow2ineq1
⊢
3
2
<
log
2
3
∧
log
2
3
<
5
3
Proof
Step
Hyp
Ref
Expression
1
tru
⊢
⊤
2
8lt9
⊢
8
<
9
3
2z
⊢
2
∈
ℤ
4
uzid
⊢
2
∈
ℤ
→
2
∈
ℤ
≥
2
5
3
4
ax-mp
⊢
2
∈
ℤ
≥
2
6
8nn
⊢
8
∈
ℕ
7
nnrp
⊢
8
∈
ℕ
→
8
∈
ℝ
+
8
6
7
ax-mp
⊢
8
∈
ℝ
+
9
9nn
⊢
9
∈
ℕ
10
nnrp
⊢
9
∈
ℕ
→
9
∈
ℝ
+
11
9
10
ax-mp
⊢
9
∈
ℝ
+
12
5
8
11
3pm3.2i
⊢
2
∈
ℤ
≥
2
∧
8
∈
ℝ
+
∧
9
∈
ℝ
+
13
logblt
⊢
2
∈
ℤ
≥
2
∧
8
∈
ℝ
+
∧
9
∈
ℝ
+
→
8
<
9
↔
log
2
8
<
log
2
9
14
12
13
ax-mp
⊢
8
<
9
↔
log
2
8
<
log
2
9
15
2
14
mpbi
⊢
log
2
8
<
log
2
9
16
15
a1i
⊢
⊤
→
log
2
8
<
log
2
9
17
eqid
⊢
8
=
8
18
cu2
⊢
2
3
=
8
19
17
18
eqtr4i
⊢
8
=
2
3
20
19
a1i
⊢
⊤
→
8
=
2
3
21
20
oveq2d
⊢
⊤
→
log
2
8
=
log
2
2
3
22
2rp
⊢
2
∈
ℝ
+
23
22
a1i
⊢
⊤
→
2
∈
ℝ
+
24
1red
⊢
⊤
→
1
∈
ℝ
25
1lt2
⊢
1
<
2
26
25
a1i
⊢
⊤
→
1
<
2
27
24
26
ltned
⊢
⊤
→
1
≠
2
28
27
necomd
⊢
⊤
→
2
≠
1
29
3z
⊢
3
∈
ℤ
30
29
a1i
⊢
⊤
→
3
∈
ℤ
31
23
28
30
relogbexpd
⊢
⊤
→
log
2
2
3
=
3
32
21
31
eqtrd
⊢
⊤
→
log
2
8
=
3
33
eqid
⊢
9
=
9
34
sq3
⊢
3
2
=
9
35
33
34
eqtr4i
⊢
9
=
3
2
36
35
a1i
⊢
⊤
→
9
=
3
2
37
36
oveq2d
⊢
⊤
→
log
2
9
=
log
2
3
2
38
16
32
37
3brtr3d
⊢
⊤
→
3
<
log
2
3
2
39
3re
⊢
3
∈
ℝ
40
39
a1i
⊢
⊤
→
3
∈
ℝ
41
40
recnd
⊢
⊤
→
3
∈
ℂ
42
2re
⊢
2
∈
ℝ
43
42
a1i
⊢
⊤
→
2
∈
ℝ
44
43
recnd
⊢
⊤
→
2
∈
ℂ
45
2pos
⊢
0
<
2
46
45
a1i
⊢
⊤
→
0
<
2
47
46
gt0ne0d
⊢
⊤
→
2
≠
0
48
41
44
47
divcan1d
⊢
⊤
→
3
2
⋅
2
=
3
49
48
eqcomd
⊢
⊤
→
3
=
3
2
⋅
2
50
3pos
⊢
0
<
3
51
50
a1i
⊢
⊤
→
0
<
3
52
40
51
elrpd
⊢
⊤
→
3
∈
ℝ
+
53
3
a1i
⊢
⊤
→
2
∈
ℤ
54
23
28
52
53
relogbzexpd
⊢
⊤
→
log
2
3
2
=
2
log
2
3
55
43
46
40
51
28
relogbcld
⊢
⊤
→
log
2
3
∈
ℝ
56
55
recnd
⊢
⊤
→
log
2
3
∈
ℂ
57
44
56
mulcomd
⊢
⊤
→
2
log
2
3
=
log
2
3
⋅
2
58
54
57
eqtrd
⊢
⊤
→
log
2
3
2
=
log
2
3
⋅
2
59
38
49
58
3brtr3d
⊢
⊤
→
3
2
⋅
2
<
log
2
3
⋅
2
60
40
rehalfcld
⊢
⊤
→
3
2
∈
ℝ
61
60
55
23
ltmul1d
⊢
⊤
→
3
2
<
log
2
3
↔
3
2
⋅
2
<
log
2
3
⋅
2
62
59
61
mpbird
⊢
⊤
→
3
2
<
log
2
3
63
2nn0
⊢
2
∈
ℕ
0
64
3nn0
⊢
3
∈
ℕ
0
65
7nn0
⊢
7
∈
ℕ
0
66
7lt10
⊢
7
<
10
67
2lt3
⊢
2
<
3
68
63
64
65
63
66
67
decltc
⊢
27
<
32
69
7nn
⊢
7
∈
ℕ
70
63
69
decnncl
⊢
27
∈
ℕ
71
nnrp
⊢
27
∈
ℕ
→
27
∈
ℝ
+
72
70
71
ax-mp
⊢
27
∈
ℝ
+
73
2nn
⊢
2
∈
ℕ
74
64
73
decnncl
⊢
32
∈
ℕ
75
nnrp
⊢
32
∈
ℕ
→
32
∈
ℝ
+
76
74
75
ax-mp
⊢
32
∈
ℝ
+
77
5
72
76
3pm3.2i
⊢
2
∈
ℤ
≥
2
∧
27
∈
ℝ
+
∧
32
∈
ℝ
+
78
logblt
⊢
2
∈
ℤ
≥
2
∧
27
∈
ℝ
+
∧
32
∈
ℝ
+
→
27
<
32
↔
log
2
27
<
log
2
32
79
77
78
ax-mp
⊢
27
<
32
↔
log
2
27
<
log
2
32
80
68
79
mpbi
⊢
log
2
27
<
log
2
32
81
80
a1i
⊢
⊤
→
log
2
27
<
log
2
32
82
eqid
⊢
32
=
32
83
2exp5
⊢
2
5
=
32
84
82
83
eqtr4i
⊢
32
=
2
5
85
84
a1i
⊢
⊤
→
32
=
2
5
86
85
oveq2d
⊢
⊤
→
log
2
32
=
log
2
2
5
87
81
86
breqtrd
⊢
⊤
→
log
2
27
<
log
2
2
5
88
eqid
⊢
27
=
27
89
3exp3
⊢
3
3
=
27
90
88
89
eqtr4i
⊢
27
=
3
3
91
90
a1i
⊢
⊤
→
27
=
3
3
92
91
oveq2d
⊢
⊤
→
log
2
27
=
log
2
3
3
93
23
28
52
30
relogbzexpd
⊢
⊤
→
log
2
3
3
=
3
log
2
3
94
92
93
eqtrd
⊢
⊤
→
log
2
27
=
3
log
2
3
95
41
56
mulcomd
⊢
⊤
→
3
log
2
3
=
log
2
3
⋅
3
96
94
95
eqtrd
⊢
⊤
→
log
2
27
=
log
2
3
⋅
3
97
5re
⊢
5
∈
ℝ
98
97
a1i
⊢
⊤
→
5
∈
ℝ
99
98
recnd
⊢
⊤
→
5
∈
ℂ
100
51
gt0ne0d
⊢
⊤
→
3
≠
0
101
99
41
100
divcan1d
⊢
⊤
→
5
3
⋅
3
=
5
102
5nn
⊢
5
∈
ℕ
103
102
a1i
⊢
⊤
→
5
∈
ℕ
104
103
nnzd
⊢
⊤
→
5
∈
ℤ
105
23
28
104
relogbexpd
⊢
⊤
→
log
2
2
5
=
5
106
105
eqcomd
⊢
⊤
→
5
=
log
2
2
5
107
101
106
eqtrd
⊢
⊤
→
5
3
⋅
3
=
log
2
2
5
108
107
eqcomd
⊢
⊤
→
log
2
2
5
=
5
3
⋅
3
109
87
96
108
3brtr3d
⊢
⊤
→
log
2
3
⋅
3
<
5
3
⋅
3
110
98
40
100
redivcld
⊢
⊤
→
5
3
∈
ℝ
111
55
110
52
ltmul1d
⊢
⊤
→
log
2
3
<
5
3
↔
log
2
3
⋅
3
<
5
3
⋅
3
112
109
111
mpbird
⊢
⊤
→
log
2
3
<
5
3
113
62
112
jca
⊢
⊤
→
3
2
<
log
2
3
∧
log
2
3
<
5
3
114
1
113
ax-mp
⊢
3
2
<
log
2
3
∧
log
2
3
<
5
3