Metamath Proof Explorer


Theorem 3lexlogpow2ineq1

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow2ineq1 32<log23log23<53

Proof

Step Hyp Ref Expression
1 tru
2 8lt9 8<9
3 2z 2
4 uzid 222
5 3 4 ax-mp 22
6 8nn 8
7 nnrp 88+
8 6 7 ax-mp 8+
9 9nn 9
10 nnrp 99+
11 9 10 ax-mp 9+
12 5 8 11 3pm3.2i 228+9+
13 logblt 228+9+8<9log28<log29
14 12 13 ax-mp 8<9log28<log29
15 2 14 mpbi log28<log29
16 15 a1i log28<log29
17 eqid 8=8
18 cu2 23=8
19 17 18 eqtr4i 8=23
20 19 a1i 8=23
21 20 oveq2d log28=log223
22 2rp 2+
23 22 a1i 2+
24 1red 1
25 1lt2 1<2
26 25 a1i 1<2
27 24 26 ltned 12
28 27 necomd 21
29 3z 3
30 29 a1i 3
31 23 28 30 relogbexpd log223=3
32 21 31 eqtrd log28=3
33 eqid 9=9
34 sq3 32=9
35 33 34 eqtr4i 9=32
36 35 a1i 9=32
37 36 oveq2d log29=log232
38 16 32 37 3brtr3d 3<log232
39 3re 3
40 39 a1i 3
41 40 recnd 3
42 2re 2
43 42 a1i 2
44 43 recnd 2
45 2pos 0<2
46 45 a1i 0<2
47 46 gt0ne0d 20
48 41 44 47 divcan1d 322=3
49 48 eqcomd 3=322
50 3pos 0<3
51 50 a1i 0<3
52 40 51 elrpd 3+
53 3 a1i 2
54 23 28 52 53 relogbzexpd log232=2log23
55 43 46 40 51 28 relogbcld log23
56 55 recnd log23
57 44 56 mulcomd 2log23=log232
58 54 57 eqtrd log232=log232
59 38 49 58 3brtr3d 322<log232
60 40 rehalfcld 32
61 60 55 23 ltmul1d 32<log23322<log232
62 59 61 mpbird 32<log23
63 2nn0 20
64 3nn0 30
65 7nn0 70
66 7lt10 7<10
67 2lt3 2<3
68 63 64 65 63 66 67 decltc 27<32
69 7nn 7
70 63 69 decnncl 27
71 nnrp 2727+
72 70 71 ax-mp 27+
73 2nn 2
74 64 73 decnncl 32
75 nnrp 3232+
76 74 75 ax-mp 32+
77 5 72 76 3pm3.2i 2227+32+
78 logblt 2227+32+27<32log227<log232
79 77 78 ax-mp 27<32log227<log232
80 68 79 mpbi log227<log232
81 80 a1i log227<log232
82 eqid 32=32
83 2exp5 25=32
84 82 83 eqtr4i 32=25
85 84 a1i 32=25
86 85 oveq2d log232=log225
87 81 86 breqtrd log227<log225
88 eqid 27=27
89 3exp3 33=27
90 88 89 eqtr4i 27=33
91 90 a1i 27=33
92 91 oveq2d log227=log233
93 23 28 52 30 relogbzexpd log233=3log23
94 92 93 eqtrd log227=3log23
95 41 56 mulcomd 3log23=log233
96 94 95 eqtrd log227=log233
97 5re 5
98 97 a1i 5
99 98 recnd 5
100 51 gt0ne0d 30
101 99 41 100 divcan1d 533=5
102 5nn 5
103 102 a1i 5
104 103 nnzd 5
105 23 28 104 relogbexpd log225=5
106 105 eqcomd 5=log225
107 101 106 eqtrd 533=log225
108 107 eqcomd log225=533
109 87 96 108 3brtr3d log233<533
110 98 40 100 redivcld 53
111 55 110 52 ltmul1d log23<53log233<533
112 109 111 mpbird log23<53
113 62 112 jca 32<log23log23<53
114 1 113 ax-mp 32<log23log23<53