Metamath Proof Explorer


Theorem 2exp5

Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion 2exp5 25=32

Proof

Step Hyp Ref Expression
1 3p2e5 3+2=5
2 1 eqcomi 5=3+2
3 2 oveq2i 25=23+2
4 2cn 2
5 3nn0 30
6 2nn0 20
7 expadd 2302023+2=2322
8 4 5 6 7 mp3an 23+2=2322
9 cu2 23=8
10 sq2 22=4
11 9 10 oveq12i 2322=84
12 8 11 eqtri 23+2=84
13 3 12 eqtri 25=84
14 8t4e32 84=32
15 13 14 eqtri 25=32