Metamath Proof Explorer


Theorem 3lexlogpow2ineq2

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow2ineq2 2<log232log232<3

Proof

Step Hyp Ref Expression
1 tru
2 2re 2
3 2 a1i 2
4 3re 3
5 4 a1i 3
6 5 rehalfcld 32
7 6 resqcld 322
8 2pos 0<2
9 8 a1i 0<2
10 3pos 0<3
11 10 a1i 0<3
12 1red 1
13 1lt2 1<2
14 13 a1i 1<2
15 12 14 ltned 12
16 15 necomd 21
17 3 9 5 11 16 relogbcld log23
18 17 resqcld log232
19 2cnd 2
20 4cn 4
21 20 a1i 4
22 0red 0
23 4pos 0<4
24 23 a1i 0<4
25 22 24 ltned 04
26 25 necomd 40
27 19 21 26 divcan4d 244=2
28 27 eqcomd 2=244
29 4re 4
30 29 a1i 4
31 3 30 remulcld 24
32 9re 9
33 32 a1i 9
34 30 24 elrpd 4+
35 2cn 2
36 4t2e8 42=8
37 20 35 36 mulcomli 24=8
38 37 a1i 24=8
39 8lt9 8<9
40 39 a1i 8<9
41 38 40 eqbrtrd 24<9
42 31 33 34 41 ltdiv1dd 244<94
43 28 42 eqbrtrd 2<94
44 eqid 9=9
45 3t3e9 33=9
46 44 45 eqtr4i 9=33
47 46 a1i 9=33
48 eqid 4=4
49 2t2e4 22=4
50 48 49 eqtr4i 4=22
51 50 a1i 4=22
52 47 51 oveq12d 94=3322
53 5 recnd 3
54 3 recnd 2
55 9 gt0ne0d 20
56 53 54 53 54 55 55 divmuldivd 3232=3322
57 56 eqcomd 3322=3232
58 52 57 eqtrd 94=3232
59 6 recnd 32
60 sqval 32322=3232
61 60 eqcomd 323232=322
62 59 61 syl 3232=322
63 58 62 eqtrd 94=322
64 43 63 breqtrd 2<322
65 3lexlogpow2ineq1 32<log23log23<53
66 65 a1i 32<log23log23<53
67 66 simpld 32<log23
68 2nn 2
69 68 a1i 2
70 3rp 3+
71 70 a1i 3+
72 71 rphalfcld 32+
73 5 3 11 9 divgt0d 0<32
74 22 6 17 73 67 lttrd 0<log23
75 17 74 elrpd log23+
76 rpexpmord 232+log23+32<log23322<log232
77 69 72 75 76 syl3anc 32<log23322<log232
78 67 77 mpbid 322<log232
79 3 7 18 64 78 lttrd 2<log232
80 5re 5
81 80 a1i 5
82 22 11 gtned 30
83 81 5 82 redivcld 53
84 69 nnnn0d 20
85 83 84 reexpcld 532
86 66 simprd log23<53
87 5nn 5
88 87 a1i 5
89 88 nnrpd 5+
90 89 71 rpdivcld 53+
91 rpexpmord 2log23+53+log23<53log232<532
92 69 75 90 91 syl3anc log23<53log232<532
93 86 92 mpbid log232<532
94 83 recnd 53
95 94 sqvald 532=5353
96 81 recnd 5
97 96 53 96 53 82 82 divmuldivd 5353=5533
98 5t5e25 55=25
99 98 a1i 55=25
100 45 a1i 33=9
101 99 100 oveq12d 5533=259
102 2nn0 20
103 5nn0 50
104 7nn 7
105 5lt7 5<7
106 102 103 104 105 declt 25<27
107 9cn 9
108 3cn 3
109 9t3e27 93=27
110 107 108 109 mulcomli 39=27
111 106 110 breqtrri 25<39
112 111 a1i 25<39
113 102 87 decnncl 25
114 113 a1i 25
115 114 nnred 25
116 9nn 9
117 116 a1i 9
118 117 nnrpd 9+
119 115 5 118 ltdivmul2d 259<325<39
120 112 119 mpbird 259<3
121 101 120 eqbrtrd 5533<3
122 97 121 eqbrtrd 5353<3
123 95 122 eqbrtrd 532<3
124 18 85 5 93 123 lttrd log232<3
125 79 124 jca 2<log232log232<3
126 1 125 ax-mp 2<log232log232<3