Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Logarithm inequalities
3lexlogpow2ineq2
Next ⟩
3lexlogpow5ineq5
Metamath Proof Explorer
Ascii
Unicode
Theorem
3lexlogpow2ineq2
Description:
Result for bound in AKS inequality lemma.
(Contributed by
metakunt
, 21-Aug-2024)
Ref
Expression
Assertion
3lexlogpow2ineq2
⊢
2
<
log
2
3
2
∧
log
2
3
2
<
3
Proof
Step
Hyp
Ref
Expression
1
tru
⊢
⊤
2
2re
⊢
2
∈
ℝ
3
2
a1i
⊢
⊤
→
2
∈
ℝ
4
3re
⊢
3
∈
ℝ
5
4
a1i
⊢
⊤
→
3
∈
ℝ
6
5
rehalfcld
⊢
⊤
→
3
2
∈
ℝ
7
6
resqcld
⊢
⊤
→
3
2
2
∈
ℝ
8
2pos
⊢
0
<
2
9
8
a1i
⊢
⊤
→
0
<
2
10
3pos
⊢
0
<
3
11
10
a1i
⊢
⊤
→
0
<
3
12
1red
⊢
⊤
→
1
∈
ℝ
13
1lt2
⊢
1
<
2
14
13
a1i
⊢
⊤
→
1
<
2
15
12
14
ltned
⊢
⊤
→
1
≠
2
16
15
necomd
⊢
⊤
→
2
≠
1
17
3
9
5
11
16
relogbcld
⊢
⊤
→
log
2
3
∈
ℝ
18
17
resqcld
⊢
⊤
→
log
2
3
2
∈
ℝ
19
2cnd
⊢
⊤
→
2
∈
ℂ
20
4cn
⊢
4
∈
ℂ
21
20
a1i
⊢
⊤
→
4
∈
ℂ
22
0red
⊢
⊤
→
0
∈
ℝ
23
4pos
⊢
0
<
4
24
23
a1i
⊢
⊤
→
0
<
4
25
22
24
ltned
⊢
⊤
→
0
≠
4
26
25
necomd
⊢
⊤
→
4
≠
0
27
19
21
26
divcan4d
⊢
⊤
→
2
⋅
4
4
=
2
28
27
eqcomd
⊢
⊤
→
2
=
2
⋅
4
4
29
4re
⊢
4
∈
ℝ
30
29
a1i
⊢
⊤
→
4
∈
ℝ
31
3
30
remulcld
⊢
⊤
→
2
⋅
4
∈
ℝ
32
9re
⊢
9
∈
ℝ
33
32
a1i
⊢
⊤
→
9
∈
ℝ
34
30
24
elrpd
⊢
⊤
→
4
∈
ℝ
+
35
2cn
⊢
2
∈
ℂ
36
4t2e8
⊢
4
⋅
2
=
8
37
20
35
36
mulcomli
⊢
2
⋅
4
=
8
38
37
a1i
⊢
⊤
→
2
⋅
4
=
8
39
8lt9
⊢
8
<
9
40
39
a1i
⊢
⊤
→
8
<
9
41
38
40
eqbrtrd
⊢
⊤
→
2
⋅
4
<
9
42
31
33
34
41
ltdiv1dd
⊢
⊤
→
2
⋅
4
4
<
9
4
43
28
42
eqbrtrd
⊢
⊤
→
2
<
9
4
44
eqid
⊢
9
=
9
45
3t3e9
⊢
3
⋅
3
=
9
46
44
45
eqtr4i
⊢
9
=
3
⋅
3
47
46
a1i
⊢
⊤
→
9
=
3
⋅
3
48
eqid
⊢
4
=
4
49
2t2e4
⊢
2
⋅
2
=
4
50
48
49
eqtr4i
⊢
4
=
2
⋅
2
51
50
a1i
⊢
⊤
→
4
=
2
⋅
2
52
47
51
oveq12d
⊢
⊤
→
9
4
=
3
⋅
3
2
⋅
2
53
5
recnd
⊢
⊤
→
3
∈
ℂ
54
3
recnd
⊢
⊤
→
2
∈
ℂ
55
9
gt0ne0d
⊢
⊤
→
2
≠
0
56
53
54
53
54
55
55
divmuldivd
⊢
⊤
→
3
2
⁢
3
2
=
3
⋅
3
2
⋅
2
57
56
eqcomd
⊢
⊤
→
3
⋅
3
2
⋅
2
=
3
2
⁢
3
2
58
52
57
eqtrd
⊢
⊤
→
9
4
=
3
2
⁢
3
2
59
6
recnd
⊢
⊤
→
3
2
∈
ℂ
60
sqval
⊢
3
2
∈
ℂ
→
3
2
2
=
3
2
⁢
3
2
61
60
eqcomd
⊢
3
2
∈
ℂ
→
3
2
⁢
3
2
=
3
2
2
62
59
61
syl
⊢
⊤
→
3
2
⁢
3
2
=
3
2
2
63
58
62
eqtrd
⊢
⊤
→
9
4
=
3
2
2
64
43
63
breqtrd
⊢
⊤
→
2
<
3
2
2
65
3lexlogpow2ineq1
⊢
3
2
<
log
2
3
∧
log
2
3
<
5
3
66
65
a1i
⊢
⊤
→
3
2
<
log
2
3
∧
log
2
3
<
5
3
67
66
simpld
⊢
⊤
→
3
2
<
log
2
3
68
2nn
⊢
2
∈
ℕ
69
68
a1i
⊢
⊤
→
2
∈
ℕ
70
3rp
⊢
3
∈
ℝ
+
71
70
a1i
⊢
⊤
→
3
∈
ℝ
+
72
71
rphalfcld
⊢
⊤
→
3
2
∈
ℝ
+
73
5
3
11
9
divgt0d
⊢
⊤
→
0
<
3
2
74
22
6
17
73
67
lttrd
⊢
⊤
→
0
<
log
2
3
75
17
74
elrpd
⊢
⊤
→
log
2
3
∈
ℝ
+
76
rpexpmord
⊢
2
∈
ℕ
∧
3
2
∈
ℝ
+
∧
log
2
3
∈
ℝ
+
→
3
2
<
log
2
3
↔
3
2
2
<
log
2
3
2
77
69
72
75
76
syl3anc
⊢
⊤
→
3
2
<
log
2
3
↔
3
2
2
<
log
2
3
2
78
67
77
mpbid
⊢
⊤
→
3
2
2
<
log
2
3
2
79
3
7
18
64
78
lttrd
⊢
⊤
→
2
<
log
2
3
2
80
5re
⊢
5
∈
ℝ
81
80
a1i
⊢
⊤
→
5
∈
ℝ
82
22
11
gtned
⊢
⊤
→
3
≠
0
83
81
5
82
redivcld
⊢
⊤
→
5
3
∈
ℝ
84
69
nnnn0d
⊢
⊤
→
2
∈
ℕ
0
85
83
84
reexpcld
⊢
⊤
→
5
3
2
∈
ℝ
86
66
simprd
⊢
⊤
→
log
2
3
<
5
3
87
5nn
⊢
5
∈
ℕ
88
87
a1i
⊢
⊤
→
5
∈
ℕ
89
88
nnrpd
⊢
⊤
→
5
∈
ℝ
+
90
89
71
rpdivcld
⊢
⊤
→
5
3
∈
ℝ
+
91
rpexpmord
⊢
2
∈
ℕ
∧
log
2
3
∈
ℝ
+
∧
5
3
∈
ℝ
+
→
log
2
3
<
5
3
↔
log
2
3
2
<
5
3
2
92
69
75
90
91
syl3anc
⊢
⊤
→
log
2
3
<
5
3
↔
log
2
3
2
<
5
3
2
93
86
92
mpbid
⊢
⊤
→
log
2
3
2
<
5
3
2
94
83
recnd
⊢
⊤
→
5
3
∈
ℂ
95
94
sqvald
⊢
⊤
→
5
3
2
=
5
3
⁢
5
3
96
81
recnd
⊢
⊤
→
5
∈
ℂ
97
96
53
96
53
82
82
divmuldivd
⊢
⊤
→
5
3
⁢
5
3
=
5
⋅
5
3
⋅
3
98
5t5e25
⊢
5
⋅
5
=
25
99
98
a1i
⊢
⊤
→
5
⋅
5
=
25
100
45
a1i
⊢
⊤
→
3
⋅
3
=
9
101
99
100
oveq12d
⊢
⊤
→
5
⋅
5
3
⋅
3
=
25
9
102
2nn0
⊢
2
∈
ℕ
0
103
5nn0
⊢
5
∈
ℕ
0
104
7nn
⊢
7
∈
ℕ
105
5lt7
⊢
5
<
7
106
102
103
104
105
declt
⊢
25
<
27
107
9cn
⊢
9
∈
ℂ
108
3cn
⊢
3
∈
ℂ
109
9t3e27
⊢
9
⋅
3
=
27
110
107
108
109
mulcomli
⊢
3
⋅
9
=
27
111
106
110
breqtrri
⊢
25
<
3
⋅
9
112
111
a1i
⊢
⊤
→
25
<
3
⋅
9
113
102
87
decnncl
⊢
25
∈
ℕ
114
113
a1i
⊢
⊤
→
25
∈
ℕ
115
114
nnred
⊢
⊤
→
25
∈
ℝ
116
9nn
⊢
9
∈
ℕ
117
116
a1i
⊢
⊤
→
9
∈
ℕ
118
117
nnrpd
⊢
⊤
→
9
∈
ℝ
+
119
115
5
118
ltdivmul2d
⊢
⊤
→
25
9
<
3
↔
25
<
3
⋅
9
120
112
119
mpbird
⊢
⊤
→
25
9
<
3
121
101
120
eqbrtrd
⊢
⊤
→
5
⋅
5
3
⋅
3
<
3
122
97
121
eqbrtrd
⊢
⊤
→
5
3
⁢
5
3
<
3
123
95
122
eqbrtrd
⊢
⊤
→
5
3
2
<
3
124
18
85
5
93
123
lttrd
⊢
⊤
→
log
2
3
2
<
3
125
79
124
jca
⊢
⊤
→
2
<
log
2
3
2
∧
log
2
3
2
<
3
126
1
125
ax-mp
⊢
2
<
log
2
3
2
∧
log
2
3
2
<
3