Metamath Proof Explorer


Theorem rpexpmord

Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rpexpmord NA+B+A<BAN<BN

Proof

Step Hyp Ref Expression
1 oveq1 a=baN=bN
2 oveq1 a=AaN=AN
3 oveq1 a=BaN=BN
4 rpssre +
5 rpre a+a
6 nnnn0 NN0
7 reexpcl aN0aN
8 5 6 7 syl2anr Na+aN
9 simplrl Na+b+a<ba+
10 9 rpred Na+b+a<ba
11 simplrr Na+b+a<bb+
12 11 rpred Na+b+a<bb
13 9 rpge0d Na+b+a<b0a
14 simpr Na+b+a<ba<b
15 simpll Na+b+a<bN
16 expmordi ab0aa<bNaN<bN
17 10 12 13 14 15 16 syl221anc Na+b+a<baN<bN
18 17 ex Na+b+a<baN<bN
19 1 2 3 4 8 18 ltord1 NA+B+A<BAN<BN
20 19 3impb NA+B+A<BAN<BN