| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
breq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq2 |
|
| 6 |
|
oveq2 |
|
| 7 |
5 6
|
breq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
9 10
|
breq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
breq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
recn |
|
| 18 |
|
recn |
|
| 19 |
|
exp1 |
|
| 20 |
|
exp1 |
|
| 21 |
19 20
|
breqan12d |
|
| 22 |
17 18 21
|
syl2an |
|
| 23 |
22
|
biimpar |
|
| 24 |
23
|
adantrl |
|
| 25 |
|
simp2ll |
|
| 26 |
|
nnnn0 |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
25 27
|
reexpcld |
|
| 29 |
|
simp2lr |
|
| 30 |
29 27
|
reexpcld |
|
| 31 |
28 30
|
jca |
|
| 32 |
|
simp2rl |
|
| 33 |
25 27 32
|
expge0d |
|
| 34 |
|
simp3 |
|
| 35 |
33 34
|
jca |
|
| 36 |
|
simp2l |
|
| 37 |
|
simp2r |
|
| 38 |
|
ltmul12a |
|
| 39 |
31 35 36 37 38
|
syl22anc |
|
| 40 |
25
|
recnd |
|
| 41 |
40 27
|
expp1d |
|
| 42 |
29
|
recnd |
|
| 43 |
42 27
|
expp1d |
|
| 44 |
39 41 43
|
3brtr4d |
|
| 45 |
44
|
3exp |
|
| 46 |
45
|
a2d |
|
| 47 |
4 8 12 16 24 46
|
nnind |
|
| 48 |
47
|
impcom |
|
| 49 |
48
|
3impa |
|